
Administrator's Guide

Version 2017.2

Copyright
Copyright © 2000-2018, NICE s.r.l.

All right reserved.

We'd Like to Hear from You
You can help us make this document better by telling us what you think of the content, organization, and usefulness
of the information. If you find an error or just want to make a suggestion for improving this document, please
address your comments to <documentation@nice-software.com>. Please send only comments regarding NICE
documentation.

For product support, contact <helpdesk@nice-software.com>.

Although the information in this document has been carefully reviewed, NICE s.r.l. ("NICE") does not warrant it to
be free of errors or omissions. NICE reserves the right to make corrections, updates, revisions, or changes to the
information in this document.

UNLESS OTHERWISE EXPRESSLY STATED BY NICE, THE PROGRAM DESCRIBED IN THIS DOCUMENT IS
PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. IN NO EVENT WILL NICE BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR SAVINGS,
ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Document Redistribution and Translation
This document is protected by copyright and you may not redistribute or translate it into another language, in part or
in whole, without the express written permission of NICE s.r.l.

Trademarks
EnginFrame, Neutro, Remote File Browsing, Service Definition File, EnginFrame Agent are registered trademarks or
trademarks of NICE s.r.l. in Italy and other countries.

Amazon™ is a registered trademark of Amazon.com, Inc.

Apache®, Apache Derby®, Tomcat® are either registered trademarks or trademarks of the Apache Software
Foundation in the United States and/or other countries.

Oracle®, Sun®, MySQL®, JavaScript® and Java™ are registered trademarks of Oracle and/or its affiliates.

Unix® is a registered trademark of The Open Group in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Microsoft®, Windows® and Internet Explorer® are either registered trademarks or trademarks of Microsoft Corporation
in the United States and other countries.

Firefox® and Mozilla® are trademarks or registered trademarks of the Mozilla Foundation in the United States and/
or other countries.

Apple®, Mac®, Mac® OS X® and Apple® Safari® are trademarks or registered trademarks of Apple, Inc. in the United
States and other countries.

Citrix®, XenDesktop®, Citrix Receiver™ are trademarks of Citrix Systems, Inc. and/or one or more of its subsidiaries,
and may be registered in the United States Patent and Trademark Office and in other countries.

IBM®, IBM® Platform™ LSF® are trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide.

Altair® PBS Professional® is a trademark of Altair Engineering, Inc.

Univa® and Univa® Grid Engine® (UGE) are trademarks of Univa Corporation.

SLURM™ is a trademark of SchedMD LLC.

RealVNC® and VNC® are trademarks of RealVNC Limited and are protected by trademark registrations and/or
pending trademark applications in the European Union, United States of America and other jurisdictions.

Adaptive Computing®, Moab® and other Adaptive Computing® products are either registered trademarks or
trademarks of Adaptive Computing Enterprises, Inc.

HP® is a registered trademark of HP Inc.

mailto:documentation@nice-software.com
mailto:helpdesk@nice-software.com

Google™ and Chrome™ are trademarks of Google Inc.

Red Hat® is a trademark of Red Hat, Inc.

SUSE® is a registered trademark of SUSE Linux AG.

Other names mentioned in this document may be trademarks of their respective owners.

Last Update
September 21, 2018 (rev. 641)

Latest Version
https://www.nice-software.com/download/enginframe

https://www.nice-software.com/download/enginframe

EnginFrame Administrator's Guide v

Contents

Welcome ... ix
About This Guide ... ix

Who Should Read This Guide ... ix
What You Should Already Know .. ix

Learn About NICE Products .. x
World Wide Web ... x
NICE EnginFrame Training ... x
NICE EnginFrame Documentation .. x

Get Technical Support ... xi
NICE Support Contacts ... xi
Collect Support Information .. xi

I. Getting Started ... 1
1. About NICE EnginFrame .. 3

Architectural Overview .. 3
Basic Execution Flow .. 4
Basic Deployment .. 6
Distributed Deployment ... 8
File Downloads .. 10
Interactive Session Broker .. 11
EnginFrame Plugins .. 13

EnginFrame Enterprise ... 14
Architecture .. 14
Software Distribution and License ... 15
Deployment .. 16

2. Obtaining NICE EnginFrame .. 19
Downloading EnginFrame ... 19
Obtaining a License .. 19

Licensed Plug-ins .. 19
3. Planning NICE EnginFrame Deployment .. 21

Prerequisites .. 21
System Requirements ... 21
Third-party Software Prerequisites .. 21
Network Requirements .. 30
Supported Browsers .. 31
Interactive Plugin Requirements .. 31
EnginFrame Enterprise System Requirements 33

Deployment Strategies .. 33
Installation Directories ... 34
Special Users .. 36
Authentication .. 37
DRM Configuration for Interactive Plugin .. 37

NICE Neutro .. 38
IBM® Platform™ LSF® or OpenLava ... 38
Torque or PBS Professional® .. 41

vi EnginFrame Administrator's Guide

SGE, Oracle® Grid Engine (OGE), Son of Grid Engine (SoGE) or
Univa® Grid Engine® (UGE) .. 42
Adaptive Computing® Moab® ... 43
SLURM™ ... 43

4. Installing NICE EnginFrame ... 45
Installing .. 45

Batch Installation ... 46
Fine Tuning Your Installation .. 46

Spooler Download URL ... 47
Optimizing JDK Options .. 47
Distributed Resource Manager Options .. 47
Interactive Plugin ... 48

EnginFrame Enterprise Installation ... 49
Load Balancer Setup ... 49
DBMS Setup .. 50
EnginFrame Service Configuration .. 53
EnginFrame Start .. 54

5. Running NICE EnginFrame .. 55
Start, Stop, and Check Status .. 55
Accessing the Portal ... 58
Demo Sites .. 58
Administration Portal ... 58

Monitor Services .. 59
Develop Services ... 59
Troubleshooting Services .. 59
EnginFrame Statistics .. 60

Applications Portal ... 60
Admin's Portal ... 60
User's Portal .. 61

Views Portal .. 61
Admin's Portal ... 61
User's Portal .. 62

II. Administration ... 63
6. Common Administration Tasks ... 65

Main Configuration Files ... 65
Deploying a New Plugin .. 68

NICE's Official Plugins .. 68
Custom Plugins ... 68

Changing Java™ Version ... 69
Changing Default Agent .. 69
Managing Internet Media Types ... 70
Customizing Error Page .. 73
Limiting Service Output ... 74
Configuring Agent Ports .. 74
Customizing User Switching ... 75
Customizing User Session Timeout .. 77
Apache®-Tomcat® Connection ... 77
Changing Charts Backend .. 79
Interactive Administration .. 79

Configuration Files ... 79

EnginFrame Administrator's Guide vii

Interactive Session Life-cycle Extension Points 86
Session limits .. 90
Log files ... 91
Interactive Plugin Directory Structure .. 91

Views Administration ... 93
Configuration Files ... 93
Log files ... 98
VDI Plugin Directory Structure .. 98

Applications Administration ... 99
Configuration Files ... 99
Log files ... 102
Applications Directory Structure .. 102

7. Managing Spoolers ... 105
Spoolers Requirements ... 106

Spooler Security Permissions .. 106
Configuring EnginFrame Spoolers .. 108

Configuring Spoolers Default Root Directory ... 108
Download Files From Spoolers ... 108

Spooler Life Cycle ... 110
Overview .. 110
Change Repository Location ... 110
Configure Reaper Sleep Time ... 111
Spoolers Removal: Dead Spoolers ... 111

8. Managing Sessions Directory .. 113
Sessions Requirements ... 114

9. Customizing Logging ... 115
Tomcat® Logging .. 115
EnginFrame Server and Agent Logging .. 115

Configuration Files ... 116
Change Log Files Location ... 116
Change Log Files Size and Rotation Policy .. 117
Change Log Level ... 118
Fine Tune Logging .. 118

EnginFrame Scriptlet Logging ... 121
10. EnginFrame Licenses ... 123

License Files Management ... 123
Configuring License Files Location ... 123

License File Format .. 124
License Checking .. 125

License Token Count .. 125
Monitoring License Usage ... 127

Enable Debug Log Messages for Licenses ... 129
III. Security ... 131

11. Authentication Framework ... 133
Standard EnginFrame Authentication Authorities .. 133
Default Authority .. 133
User Mapping .. 134
Configuring NICE EnginFrame Authorities .. 135

PAM ... 135
LDAP ... 136

viii EnginFrame Administrator's Guide

Active Directory ... 136
HTTP ... 136
Certificate ... 137

Custom Authentication Authority ... 137
The <authority>.login File .. 138
The ef.auth File ... 139

12. Authorization System ... 141
Configuring Authorization .. 141

Defining Actors .. 142
Defining Access Control Lists ... 143
Condition Based ACL .. 145

13. Configuring HTTPS ... 149
Change HTTPS certificates ... 149

Index ... 151

EnginFrame Administrator's Guide ix

Welcome

About This Guide
This guide provides information about installing, configuring, managing, and maintaining an instance
of NICE EnginFrame portal.

Who Should Read This Guide

This guide is intended for system administrators who will install and administer an instance of NICE
EnginFrame portal but are not necessarily creating new services.

What You Should Already Know

This guide assumes:

• You have knowledge of Unix® system administration tasks such as creating user accounts, sharing
and mounting Network File System (NFS) partitions, backing up the system, etc.

• You have basic knowledge about web-related technologies like the HTTP protocol, the SSL
protocol, the XML language, etc.

Learn About NICE Products

x EnginFrame Administrator's Guide

Learn About NICE Products

World Wide Web

You can find the latest information about NICE EnginFrame on its web site
https://www.nice-software.com.

For more information about other NICE products and about the professional services provided by
NICE you can refer to the company's web site https://www.nice-software.com.

Report problems accessing the aforementioned web sites to
<helpdesk@nice-software.com>.

NICE EnginFrame Training

Training classes offered by NICE can help you master the skills needed to productively configure,
manage, and maintain your EnginFrame Portal.

Classes are available at our corporate headquarters and other NICE locations.

Customized on-site classes are also available.

Find out more about NICE training at https://www.nice-software.com or for further
details contact <info@nice-software.com>.

NICE EnginFrame Documentation

The latest NICE EnginFrame documentation is available at
https://www.nice-software.com/download/enginframe.

Visit NICE web site at https://www.nice-software.com and get your personal access code
to the documentation area or contact <documentation@nice-software.com>.

https://www.nice-software.com
https://www.nice-software.com
mailto:helpdesk@nice-software.com
https://www.nice-software.com
mailto:info@nice-software.com
https://www.nice-software.com/download/enginframe
https://www.nice-software.com
mailto:documentation@nice-software.com

Get Technical Support

EnginFrame Administrator's Guide xi

Get Technical Support
Contact NICE or your EnginFrame reseller for technical support.

NICE Support Contacts

Use one of the following to contact NICE technical support.

Email
<helpdesk@nice-software.com>

World Wide Web
https://www.nice-software.com

Phone
+39 0141 901516

Mail
NICE Support
c/o NICE s.r.l.
Via Milliavacca, 9
14100 Asti
Italy

When contacting NICE, please include your company's full name.

Collect Support Information

Please use "Support/Collect support info" service described in the section called “Administration
Portal” to collect some preliminary data that could help NICE support team speed up time to process
your support request.

The output of this service is a compressed archive containing all the gathered information. Please
send the compressed archive to NICE support team attached to your request.

mailto:helpdesk@nice-software.com
https://www.nice-software.com

PART I

Getting Started

EnginFrame Administrator's Guide 3

1
About NICE EnginFrame

EnginFrame is the leading grid-enabled application portal for user-friendly HPC job submission,
control, and monitoring. It includes sophisticated data management for all stages of job lifetime and is
integrated with most important job schedulers and middleware tools to submit, monitor, and manage
jobs.

EnginFrame provides a modular system where new functionality (e.g. application integrations,
authentication sources, license monitoring, etc.) can be easily added. It also features a sophisticated
Web Services interface which can be leveraged, for example, to enhance existing applications as well
as developing custom solutions for your own environment.

A key advantage of EnginFrame is the rapid migration from command-line to Computing Portal
paradigm, leveraging existing scripting solutions where available.

Based on the latest and most advanced Web 2.0 standards, it provides a flexible infrastructure to
support current and future computing needs. As you can expect from a web-enabling solution, it is
flexible in content presentation, providing personalized experience for users according to their role
or operational context.

Architectural Overview

EnginFrame has an architecture layered into three tiers, as shown in Figure 1.1, “EnginFrame
Architecture”:

• The Client Tier usually consists of the user's web browser. It provides an easy-to-use interface
based on established web standards like XHTML and JavaScript®. This tier is independent from
the specific software and hardware environment used by the end user. The Client Tier can also
integrate remote visualization technologies like Virtual Network Computing (VNC®).

• The Server Tier consists of a Server that interacts with EnginFrame Agents and manages the
interaction with users.

• The Resource Tier consists of one or more Agents deployed on the back-end infrastructure. Agents
manage computing resources on user's behalf and interact with the underlying operating system,
job scheduler, or grid infrastructure to execute EnginFrame services (e.g. starting jobs, moving
data, retrieving cluster load, etc.)

Basic Execution Flow

4 EnginFrame Administrator's Guide

Figure 1.1. EnginFrame Architecture

Basic Execution Flow

EnginFrame abstracts computing resources and data management (Resource Tier) and exposes
services to users (Server Tier) which in turn can use them directly from their browsers (Client Tier).

EnginFrame's internal structure reflects this high level architecture and revolves around two main
software components: the EnginFrame Server and the EnginFrame Agent.

The EnginFrame Server
The EnginFrame Server is a Java™ Web Application and must be deployed inside a Java Servlet
Container (EnginFrame ships Apache Tomcat® 7.0.85). It takes care of exposing services to
users.

http://tomcat.apache.org/

Basic Execution Flow

EnginFrame Administrator's Guide 5

The EnginFrame Agent
The EnginFrame Agent is a stand-alone Java™ application which manages the computing
resources and executes services on user's behalf (when running as root).

As you can see in Figure 1.2, “Interaction Diagram”, EnginFrame Server receives incoming requests
from the Web Browser (1), authenticates and authorizes them and then asks an EnginFrame Agent
(2) to execute the required actions.

Agents can perform different kind of actions, from the execution of a simple command on the
underlying operating system to the submission of a job on the grid infrastructure (3).

The results of the executed action are gathered by the Agent (4) and sent back to the Server (5).

The Server applies some post processing transformations, filters output according to defined access
control lists (ACL), and transforms the results into an HTML page (6).

Figure 1.2. Interaction Diagram

EnginFrame creates (or reuses) a data area each time a new action is executed. This area is called
spooler.

Basic Deployment

6 EnginFrame Administrator's Guide

The spooler is the action's working directory. It contains files uploaded during action submission.
Users can only download files from their spoolers.

The spooler is located on a file-system readable and writable by both Server and Agent. Refer to
Chapter 7, Managing Spoolers for further details.

Basic Deployment

When EnginFrame Portal is installed on one host it is called basic installation. As shown in Figure 1.3,
“EnginFrame Deployed on One Host”, the Server Tier also contains the Agent used to access
Resource Tier. User efnobody (default user chosen during installation procedure) runs the Server
in this scenario. The EnginFrame Server contains a local Agent that is used when:

• Expressly configured in your service description.

• Submitting a scriptlet.

Normally the Server contacts a remote Agent, configured as the default one during setup procedure.
Usually the remote Agent runs as root and can:

• Authenticate users using PAM/NIS.

• Create/delete spoolers on user's behalf.

• Execute services on user's behalf.

• Download files on user's behalf.

The remote Agent can also run as unprivileged user but you lose the main features of an Agent running
as root: all spoolers, services, etc. are created/executed as this unprivileged user. It also implies
that EnginFrame has to use an authentication module that does not require root privileges to check
credentials (e.g., ldap, activedirectory, etc.)

The Server communicates with the Remote Agent using Java™ RMI protocol, while the local Agent
is reached directly since it lives inside the Server's JVM space.

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html

Basic Deployment

EnginFrame Administrator's Guide 7

Figure 1.3. EnginFrame Deployed on One Host

Distributed Deployment

8 EnginFrame Administrator's Guide

Distributed Deployment

EnginFrame Server can be deployed in a demilitarized zone (DMZ) accessible from Intranet/Internet
while the default EnginFrame Agent resides in your protected computing environment. EnginFrame
Server and EnginFrame Agent reside on different hosts in this scenario called distributed deployment.
You can see this in Figure 1.4, “EnginFrame Deployed on More Hosts”.

In this scenario the following requirements have to be met:

• Server host reaches Agent host on ports specified during setup.

• Agent host reaches Server host via HTTP on port specified during setup.

• Spoolers are stored on a shared file-system.

• Spooler shared file-system is readable and writable by both efnobody and root.

The Server has to reach the Agent via RMI otherwise user's submissions fail.

The Agent has to reach the Server via HTTP otherwise user's downloads fail.

Why spoolers have to reside on a shared file-system

The Server saves files sent by users while the service executed on Agent
needs to access them. Since files are written by the Server, efnobody needs
read access to traverse the directory structures while creating new spoolers
and write acces to write files; since services are executed on user's behalf,
root needs write permissions on spoolers area in order to give directory and
files ownership to the user executing the service. This ownership change is
necessary since the spooler and the files were created by efnobody.

Distributed Deployment

EnginFrame Administrator's Guide 9

Figure 1.4. EnginFrame Deployed on More Hosts

File Downloads

10 EnginFrame Administrator's Guide

File Downloads

Users can only download files contained in their spoolers and Figure 1.5, “File Download Interaction”
explains this process flow.

EnginFrame Server receives incoming requests from the Web Browser (1) and forwards request to
EnginFrame Agent (2) which downloads the remote file.

EnginFrame Agent forks a process as user which reads the file (3).

EnginFrame Agent connects back to EnginFrame Server via HTTP to send back bytes produced by
forked process (4).

EnginFrame Server sends back the bytes as are to browser (5).

The browser displays the file or proposes to save it on disk depending on file mime-type and browser
settings (6). Refer to the section called “Managing Internet Media Types” for further details.

Step (4) highlights why it is important for EnginFrame Agent to reach EnginFrame Server via HTTP.

EnginFrame also allows you to download files in streaming mode. File contents are shown while it
grows. This is useful for files that grow during service execution. The flow is the same as the remote
file download except that EnginFrame Server polls, at fixed intervals, EnginFrame Agent for some
fresh data. This feature mimics Unix® tail that displays the last file portion while it grows.

Interactive Session Broker

EnginFrame Administrator's Guide 11

Figure 1.5. File Download Interaction

Interactive Session Broker

EnginFrame 2017.2 includes the interactive plugin, a session broker built ground up to be scalable
and reliable. Its main purpose is to ease application delivery and manage interactive sessions.

Deployment

The solution relies on the following systems:

• NICE EnginFrame, the kernel on top of which Interactive Plugin is built.

• A resource manager software to allocate and reserve resources according to the desired resource
sharing policy or a third party session broker (Citrix® XenDesktop®).

• One or more remote visualization middlewares like NICE DCV, HP® RGS, VirtualGL or
RealVNC®.

Interactive Session Broker

12 EnginFrame Administrator's Guide

For a complete list of supported HPC workload managers, session brokers and visualization
middlewares, please refer to the section called “Prerequisites”.

The visualization farm can be only Linux®, only Windows® or both.

The following picture represents the main components of the solution stack:

Figure 1.6. Interactive Plugin Architecture

Execution Flow

The following picture represents a real world example infrastructure including nodes with NICE
DCV, HP® RGS and RealVNC®. This infrastructure was designed and deployed to deliver 3D
applications on Linux® through NICE DCV, 3D applications on Windows® through HP® RGS, 2D
applications on Windows® through XenDesktop® and 2D applications on both OSes through VNC®.

The following explains what happens at each step:

1. The user connects to Interactive Plugin to create a new session. Each session is a distinct job of
the underlying HPC workload scheduler or a distinct session in the underlying third party session
broker.

2. The resource manager or the session broker schedules the new session on the most appropriate
node that complies with the application requirements and the resource sharing policies.

3. Once the session is created, Interactive Plugin sends a file to the web browser. This file contains
information that allows the browser to kickoff the correct visualization client. The client uses this
information to connect to the remote session.

EnginFrame Plugins

EnginFrame Administrator's Guide 13

Figure 1.7. Interactive Plugin Use Model

EnginFrame Plugins

A plugin is a piece of software that extends EnginFrame Portal. NICE sells and gives for free many
of these extensions. Please contact <helpdesk@nice-software.com> for a complete list of
plugins and for pricing questions.

The plugins can extend EnginFrame in many different areas:

• Bundle - a full featured package containing other plug-ins

• Kernel - an extension that enhances EnginFrame core system, e.g. WebServices, Interactive Plug-
in

• Auth - an extension that authenticates users against an authoritative source, e.g. PAM Plug-in

• Data - an extension that helps display data inside EnginFrame Portal, e.g. File Manager, RSpooler
Plug-in

• Grid - an extension that connects EnginFrame Portal with a grid manager, e.g. LSF Plug-in

• Util - additional utility components, e.g. Demo Portal

NICE ships many plugins according to these conventions:

• Certified extensions - are developed and supported by NICE. They are available and supported
as add-on products, which pass a quality assurance process at every new release of EnginFrame.
Each extension is individually certified to work on the latest release of EnginFrame and guidelines
are provided to evaluate how different groups of extensions may interact. No implicit commitment
is taken about the compatibility between two different extensions.

• Qualified extensions - are developed or modified by NICE, which ensures a professional
development and good functionality under some specific EnginFrame configuration. Qualified

mailto:helpdesk@nice-software.com

EnginFrame Enterprise

14 EnginFrame Administrator's Guide

extensions are available as project-accelerator solutions, to facilitate integration of your
EnginFrame Portal in specific complex scenarios. Further support can be provided as Professional
Services.

• Contributed extensions - are developed by third parties and made available by the respective
authors. They are provided as-is and no additional endorsement is provided by NICE. Further
support on such modules may be asked to the contributing authors, if available.

EnginFrame Enterprise

This section describes the EnginFrame Enterprise version, the solution aimed at enterprise
environments where load balancing and fault tolerance are crucial requirements.

All the general concepts about EnginFrame explained in the previous sections apply also to
EnginFrame Enterprise version. The following sections illustrate the characteristics of the Enterprise
solution, describing the architecture, highlighting the differences with the architectures above, and
suggesting the best approach for the deployment.

Architecture

The first aspect to highlight about EnginFrame Enterprise architecture as depicted in Figure 1.8,
“EnginFrame Enterprise Architecture”, is that it involves multiple EnginFrame Servers and multiple
EnginFrame Agents. All the Servers and the Agents maintain the same role and functionalities as
described in the previous sections but in an EnginFrame Enterprise infrastructure the EnginFrame
Servers are also able to communicate each other by network to share and manage the system status.

The shared system status involves the following resources:

• users' spoolers and spoolers repository

• EnginFrame triggers

• logged-in users

• EnginFrame license tokens

Information are shared among EnginFrame Servers and managed in a distributed architecture where
there is no "master" and so no single point of failure in the system. Each of the server alone can cover
all the needed functionalities and, at the occurrence, it would be able to keep the whole system up
and running, making the system more robust and fault-tolerant.

Software Distribution and License

EnginFrame Administrator's Guide 15

Figure 1.8. EnginFrame Enterprise Architecture

The EnginFrame Enterprise solution relies on a file-system that is not only shared between an
EnginFrame Server and an EnginFrame Agent but it's shared among all the Servers and Agents. In
more details, the EnginFrame Agents, as explained above, need access to the spoolers area while
EnginFrame Servers have stronger requirements needing other file-system resources to be shared
besides spoolers: the EnginFrame repository files containing server-side metadata about spoolers, the
file upload cache, the plugins data directory tree, etc. Without going deeper into details, the section
called “Deployment” describes the suggested and supported approach about file-system sharing.

Another important component to consider in the EnginFrame architecture is the Database
Management System (DBMS). While in a standard EnginFrame installation you can rely on the
database distributed with EnginFrame, that is Apache Derby®, in the EnginFrame Enterprise solution
you must consider to have an external JDBC compliant DBMS. All the EnginFrame Servers then
need to have access to the database.
The list of supported DBMS is summarized in Table 3.1, “Supported Database Management
Systems”.

As last component, in order to have a single point of access to EnginFrame, the architecture involves
a front-end HTTP/S network load balancer. This component is not part of the EnginFrame Enterprise
deployment but it's a third party solution, software or hardware (e.g. Cisco router 6500/7600 series),
configured with the sticky session capability1 that dispatches users' requests to the EnginFrame
Servers in a balanced way.

NICE can provide and setup the network load balancer based on third party technology, e.g. Apache®
Web server, as professional services activity according to specific projects with customers.

Software Distribution and License

EnginFrame Enterprise is distributed with the same software package of EnginFrame. It's the
EnginFrame software license that actually enables EnginFrame Enterprise capabilities.

Here an example of an EnginFrame Enterprise license:

1 Sticky session refers to the feature of many commercial load balancing solutions for Web-farms to route the requests for a particular session to the same
physical machine that serviced the first request for that session. So the balancing occurs on Web sessions and not on the single received Web requests.

Deployment

16 EnginFrame Administrator's Guide

<?xml version="1.0"?>
<ef-licenses>
 <ef-license-group product="EnginFrame HPC ENT" release="2015.0" format="2">
 <ef-license
 component="EF Base"
 vendor="NICE"
 expiration="2015-12-31"
 ip="172.16.10.171,172.16.10.172"
 licensee="NICE RnD Team"
 type="DEMO"
 units="100"
 units-per-user="1"
 license-hosts="false"
 hosts-preemption="false"
 signature="MC0CFQCGPmb31gpiGxxEr0DdyoYud..." <!-- Omitted -->
 />
 </ef-license-group>
</ef-licenses>

In particular please note the product attribute value: EnginFrame HPC ENT. This defines an
EnginFrame license for HPC environments with the ENT string specifying the Enterprise version.
Also note the ip attribute of tag ef-license with the list of the IP addresses of the licensed
EnginFrame Servers nodes.

For information about how to get the EnginFrame software and license please refer to Chapter 2,
Obtaining NICE EnginFrame.

Deployment

Due to the inner distributed nature of its architecture the possible deployment scenarios of
EnginFrame Enterprise can be quite different and vary in complexity.

You can have each component, EnginFrame Server or Agent, on a different node and you can decide
to pick only the minimum parts of the file-system to share on each of the node. Remember that
in an EnginFrame Enterprise deployment you also have file-system resources to be shared among
EnginFrame Servers and in many cases, even when resources do not necessarily require sharing, they
should anyway be replicated and maintained aligned among EnginFrame Servers.

Even if, in principle, it's possible to fine tune the installation of EnginFrame Enterprise taking into
account the different factors as networking and file-system sharing, it's common practice to go for a
much faster and easier-to-maintain deployment approach that is described here. A different approach
from what is presented here, should be followed only in case of particular customer's needs and it
requires to be discussed with NICE professional services.

The suggested and supported approach to EnginFrame Enterprise deployment involves

• one node for each pair of EnginFrame Server and Agent you want to install;

• a shared file-system for the whole $EF_TOP directory tree.

Where $EF_TOP is the top EnginFrame installation directory. For more details please refer to the
section called “Installation Directories”.

With this approach you are able to install and manage the software from just one node and all the
binaries and data directories as spoolers, sessions, license, etc. will be shared among the installation
nodes.

Deployment

EnginFrame Administrator's Guide 17

Please note that for those resources that are expected to be local and that would conflict in a shared
environment, e.g. in the logging directory each Server (and Agent) writes log files with the same
names, EnginFrame provides a per-hostname directory tree, making safe the sharing.

The external DBMS is suggested to reside on a different node(s) and possibly configured to be fault
tolerant.

During installation of EnginFrame Enterprise you will be prompted to insert the JDBC URL to
the EnginFrame database instance together with the username and password with which to access.
The EnginFrame database instance must be previously created empty, then EnginFrame, at the first
connection, will create all the needed tables.

The details that specifically concern an EnginFrame Enterprise deployment, its requirements and
installation notes, are integrated where needed in the next chapters of this guide.

EnginFrame Administrator's Guide 19

2
Obtaining NICE EnginFrame

If you have not already received your NICE EnginFrame package from NICE or your EnginFrame
reseller, you can download it from EnginFrame Web site.

Downloading EnginFrame
 EnginFrame packages can be downloaded from:

https://www.nice-software.com/download/enginframe

You need a valid account to access the download area. If you do not have one yet, please contact
<helpdesk@nice-software.com> or your EnginFrame reseller.

Obtaining a License
 You need a valid license to install and run EnginFrame. If you do not have one yet, please contact
<helpdesk@nice-software.com> or your EnginFrame reseller.

EnginFrame licenses are classified as:

• Demo licenses - demo licenses are usually not bound to any IP address and are valid for one month.

• Full licenses - full licenses have time-unlimited validity and are bound to one or more IP addresses.

• Year licenses - year licenses have time-limited validity and are bound to one or more IP addresses.

You have to contact <helpdesk@nice-software.com> or your EnginFrame reseller to
purchase, renew, or update a license, perform a license change or obtain a demo license.

Licensed Plug-ins

Some EnginFrame plug-ins require a specific license to work. The standard plug-ins included in
EnginFrame installation which require a license are:

Plug-ins requiring a specific license

interactive
Enables basic functionalities for Interactive Session management

https://www.nice-software.com/download/enginframe
mailto:helpdesk@nice-software.com
mailto:helpdesk@nice-software.com
mailto:helpdesk@nice-software.com

Licensed Plug-ins

20 EnginFrame Administrator's Guide

applications
Enables the Applications portal

neutro
Enables the NEUTRO grid functionalities

hpc-support
Enables the HPC functionalities

Additional plug-ins provided by NICE may require a license as well.

The license file provided by your sales contact should contain license components for all the plug-
ins included in your EnginFrame bundle.

Please check with your NICE sales contact or with our support helpdesk@nice-software.com for
details.

If you have a specific license file, it must be copied under $EF_TOP/license folder, and have
an .ef extension.

It will be automatically read by the portal. There's no need to restart EnginFrame.

Note
Remove from $EF_TOP/license folder any older .ef license files
containing expired or invalid licenses, since EnginFrame will not accept any
license conflict.

Here's an example license for component Interactive:

<?xml version="1.0"?>

<ef-licenses>
<ef-license-group product="EnginFrame PRO" format="1.0" release="2014.0">
 <ef-license
 component="interactive"
 vendor="NICE"
 expiration="2014-12-31"
 ip="10.20.10.14"
 licensee="Acme.com"
 type="DEMO"
 units="20"
 signature="xxxxxx"
 />
</ef-license-group>
</ef-licenses>

Refer to Chapter 10, EnginFrame Licenses for detailed information about EnginFrame licenses.

EnginFrame Administrator's Guide 21

3
Planning NICE EnginFrame

Deployment

Setting up EnginFrame is a straightforward process. However it is very important to accurately
plan your EnginFrame Portal deployment to achieve a seamless integration with your computing
environment and to satisfy your organization's IT requirements.

Prerequisites
 Your system has to satisfy the following requirements before deploying EnginFrame Portal.

System Requirements

NICE EnginFrame supports the following operating systems1:

• Amazon™ Linux® release 2016.03 or above

• Red Hat® Enterprise Linux® 5.x, 6.x, 7.x (x86-64)

• SUSE® Linux® Enterprise Server 11 SP2, 12 SP3 (x86-64)

The installation machine must have at least 3 GB of RAM and one or more IP addresses (at least one
of them reachable by each of the potential client machines, directly or via proxies).

To install EnginFrame you need at least 200 MB of free disk space, but 2 GB or more are suggested
since, while operating, the software saves important data and logging information.

Please, make sure you have enough space for the service data stored inside the EnginFrame
spoolers. By default, spoolers are located inside the EnginFrame installation directory ($EF_TOP/
spoolers).

Third-party Software Prerequisites

Besides the standard packages installed with your operating system, NICE EnginFrame requires some
additional third-party software.

1 Other Linux® distributions and compatible Java™ versions might work but are not officially supported. Contact
<helpdesk@nice-software.com> for more information.

mailto:helpdesk@nice-software.com

Third-party Software Prerequisites

22 EnginFrame Administrator's Guide

Java™ Platform

NICE EnginFrame requires the Linux® x64 version of Oracle® Java™ Platform Standard Edition
(Java™ SE 7 or Java™ SE 8) or OpenJDK Runtime Environment 7 or 8.

From now on, we will call JAVA_HOME the Java™ installation directory.

Java™ and Security

NICE suggests you to use the latest version of Oracle® Java™ SE 8 or
OpenJDK 8 since they contain important enhancements to improve security
of your Java™ applications.

The same Java™ version must be used for both EnginFrame Server and EnginFrame Agent.

Database Management Systems

Since version 2013.0, EnginFrame requires a JDBC-compliant database. EnginFrame uses the
RDBMS to manage Triggers, Job-Cache and Applications and Views users' groups. EnginFrame
Triggers rely on Quartz2 engine to schedule the execution of EnginFrame services. Triggers are used
internally to execute periodic tasks as to check and update Interactive sessions status and to collect
EnginFrame usage statistics informations. The Job-Cache feature is responsible for collecting and
caching job statuses over time.

By default Apache Derby® 10.11 database is installed together with EnginFrame Professional,
however using Apache Derby® in a production installation is not recommended.

Apache Derby® is not supported for EnginFrame Enterprise installations, it is strongly suggested to
use an external JDBC-compliant RDBMS. Since EnginFrame Enterprise is part of a HA solution,
also the RDBMS must have its own HA strategy. The external RDBMS is suggested to reside on a
different node(s) than the EnginFrame servers and possibly configured to be fault tolerant.

Please refer to the following table to select the database which fits your needs.

Table 3.1. Supported Database Management Systems

Name Version Notes

Apache Derby® 10.11 Included in the EnginFrame Professional
edition. Can be used for small EnginFrame
Professional installations. Not suggested for
medium and large production installations.

It is not supported by EnginFrame Enterprise
edition.

SQL Server® 2008 R2, 2012 Requires installation of the JDBC driver.

Microsoft® JDBC official driver can be
downloaded from http://www.microsoft.com/
en-us/download/details.aspx?id=11774.

Oracle® Database Enterprise Edition
11g Release 2

Requires installation of the JDBC driver

2http://www.quartz-scheduler.org

http://www.microsoft.com/en-us/download/details.aspx?id=11774
http://www.microsoft.com/en-us/download/details.aspx?id=11774
http://www.quartz-scheduler.org/

Third-party Software Prerequisites

EnginFrame Administrator's Guide 23

Name Version Notes

Oracle® JDBC official driver can be
downloaded from http://www.oracle.com/
technetwork/database/features/jdbc.

MySQL® Database 5.6 Requires installation of the JDBC driver

MySQL® JDBC official driver can be
downloaded from http://dev.mysql.com/
downloads/connector/j.

EnginFrame provides the JDBC driver for Apache Derby® only. In case a different DBMS is used, the
JDBC driver must be added after the installation to the $EF_TOP/<VERSION>/enginframe/
WEBAPP/WEB-INF/lib directory.

Please refer to the DBMS documentation for instructions on how to get the proper JDBC driver and
configure it.

Authentication Mechanisms

EnginFrame supports different authentication mechanisms. Some of them require third-party
software components.

Refer to Table 3.2, “Supported Authentication Mechanisms” to select the most appropriate
authentication method for your system and check its third-party software prerequisites (if any).

Table 3.2. Supported Authentication Mechanisms

Name Prerequisites Notes

PAM Linux® PAM must be
correctly configured

It is the most common authentication method.
It allows a system administrator to add new
authentication methods simply by installing new
PAM modules, and to modify authentication
policies by editing configuration files.
At installation time, you will be asked to specify
which PAM service to use, system-auth is the
default.

LDAP

Active
Directory

The ldapsearch
command must be
installed and working
appropriately on the
EnginFrame Agent host

These methods allow you to authenticate users
against a LDAP or Active Directory server.
The EnginFrame installer will ask you to specify
the parameters needed by ldapsearch to contact
and query your directory server.

HTTP
Authentication

External HTTP
authentication system

This method relies on an external authentication
system to authenticate the users. The external
system then adds an HTTP authentication header to
the user requests. EnginFrame will trust the HTTP
authentication header.

Certificate SSL Certificates need
to be installed and
exchanged between

This method relies on the authentication
accomplished by the web server, which requires

http://www.oracle.com/technetwork/database/features/jdbc
http://www.oracle.com/technetwork/database/features/jdbc
http://dev.mysql.com/downloads/connector/j
http://dev.mysql.com/downloads/connector/j

Third-party Software Prerequisites

24 EnginFrame Administrator's Guide

Name Prerequisites Notes

EnginFrame Server and
clients.

the client authentication through the use of SSL
certificates.

The EnginFrame installer can optionally verify if you have correctly configured the selected
authentication method.

NICE EnginFrame can be easily extended to add support for custom authentication mechanisms.

Distributed Resource Managers

EnginFrame supports different distributed resource managers (DRM).

At installation time, you will need to specify which DRMs you want to use and provide the
information required by EnginFrame to contact them. A single EnginFrame instance can access more
than one DRM at the same time.

Refer to Table 3.3, “Supported Distributed Resource Managers” for a list of supported DRMs.

Table 3.3. Supported Distributed Resource Managers

Name Version Notes

IBM® Platform™
LSF®

6.x - 10.x

OpenLava 2.x

The LSF/openlava client software must be
installed on the EnginFrame Agent host.
The installer will ask you to specify the LSF/
openlava profile file.

Adaptive
Computing® Moab®
Web Services (MWS)

7.2.x The MWS server must be reachable from the
EnginFrame Server host.
The installer will ask you to specify the IP
address of your MWS server.

Altair® PBS
Professional®

7.x - 14.x The PBS Professional® client software must
be installed on the EnginFrame Agent host.
The installer will ask you to specify the
directory where the PBS Professional® client
software is installed.

Torque 3.x - 6.x The Torque client software must be installed
on the EnginFrame Agent host.
The installer will ask you to specify the
directory where the Torque client software is
installed.

NICE Neutro 2013 or later The NEUTRO master(s) must be reachable
from the EnginFrame Server host.
The installer will ask you to specify the IP
address of your NEUTRO masters.

SLURM™ 14.x - 17.x SLURM™ binaries must be installed on the
EnginFrame Server host. SLURM™ master
host must be reachable from the EnginFrame
Server host.

Third-party Software Prerequisites

EnginFrame Administrator's Guide 25

Name Version Notes

The installer will ask you to specify the path
where binaries are installed.
On SLURM™ configuration, specifically
related to compute nodes dedicated
to interactive sessions, the Features:
vnc,dcv,dcv2 and RealMemory parameters
must be added to every required node. 'dcv2'
stands for DCV since 2017.

Sun® Grid Engine
(SGE)

6.2

Oracle® Grid Engine
(OGE)

7.0

Univa® Grid
Engine® (UGE)

8.x

Son of Grid Engine
(SoGE)

8.1.x

The Grid Engine client software must be
installed on the EnginFrame Agent host.
The $SGE_ROOT/$SGE_CELL/common
must be shared from SGE master to EF nodes.
The installer will ask you to specify the Grid
Engine shell settings file.

Open Grid Scheduler 2011.x

Some schedulers like Torque, PBS Professional® and Univa® Grid Engine® (UGE) 8.2.0 have job
history disabled by default. This means that a job will disappear when finished. It is strongly suggested
to configure these distributed resource managers to retain information about the finished jobs. For
more information on the configuration check the section called “Required DRM Configuration”.

Support for additional resource managers is available via optional plugins. Contact
<helpdesk@nice-software.com> for more information.

Required DRM Configuration

Altair® PBS Professional®
Applies to versions: 11, 12, 14
Altair® PBS Professional® by default does not show finished jobs. To enable job history, a server
parameter must be changed:

qmgr -c "set server job_history_enable = True"

Once enabled, the default duration of the job history is 2 weeks.

Torque
Applies to versions: 4, 5, 6
Torque by default does not show finished jobs. To enable job history, a queue parameter must
be changed:

qmgr -c "set queue batch keep_completed=120"

The keep_completed parameter specifies the number of seconds jobs should be held in the
Completed state after exiting.

mailto:helpdesk@nice-software.com

Third-party Software Prerequisites

26 EnginFrame Administrator's Guide

Once enabled, the default duration of the job history is 2 minutes.
Applies to versions: all
In order to get the Display Output functionality for Torque jobs, qpeek tool should be configured
properly. By default qpeek uses the rsh command to remote access the so-called "mother superior"
node.
Choose between installing rsh on the nodes or configure qpeek to use ssh and install ssh
configured passwordless among the nodes.

Univa® Grid Engine® (UGE)
Applies to versions: 8.2.x
Univa® Grid Engine® (UGE) by default does not show finished jobs. To enable job history:

• (8.2.0 only) disable reader threads:

edit file SGE_ROOT/SGE_CELL/common/bootstrap

set reader_threads to 0 instead of 2

• enable finished jobs:
run

qconf -mconf

set finished_jobs to a non-zero value according to the rate of finishing jobs.

The finished_jobs parameter defines the number of finished jobs stored. If this maximum
number is reached, the eldest finished job will be discarded for every new job added to the
finished job list.

By default EnginFrame grabs the scheduler jobs every minute. The finished_jobs
parameter must be tweaked so that a finished job stays in the job list for at least a minute.
Depending on the number of jobs running in the cluster a reasonable value is in between the
medium number of running jobs and the amount of jobs ending per minute.

• restart qmaster

SLURM™
Applies to versions: all
SLURM™ show finished jobs for a default period defined by the MinJobAge parameter in
file slurm.conf (under /etc/slurm or the SLURM™ configuration directory). The default
value is 300 seconds, i.e. five minutes, which is acceptable.

In case you changed this parameter, ensure it is not set to a value lower than 300.

Also check the MaxJobCount parameter is not set.

After changing this parameter restart SLURM™ with:

/etc/init.d/slurm stop
/etc/init.d/slurm start

The setting must be done on all SLURM™ nodes.

IBM® Platform™ LSF® / OpenLava
Applies to versions: all

Third-party Software Prerequisites

EnginFrame Administrator's Guide 27

IBM® Platform™ LSF® and OpenLava show finished jobs for a default period defined by the
CLEAN_PERIOD parameter in file lsb.params. The default value is 3600 seconds, i.e. one
hour, which is acceptable.

In case you changed this parameter, ensure it is not set to a value lower than 300.

After changing this parameter run:

badmin reconfig

Session Brokers

Starting from version 2017.0, EnginFrame supports Citrix® XenDesktop® as Session Broker.

At installation time you can choose to use XenDesktop® as session broker and provide the
configuration parameters required by EnginFrame to contact the XenDesktop® Server.

Table 3.4. Supported Session Brokers

Name Version Notes

XenDesktop® 7.6 see the section called “Required Session
Brokers Configuration”

For detailed instructions on how to install and configure the session broker please refer to its manuals.

Contact <helpdesk@nice-software.com> for more information.

Required Session Brokers Configuration

XenDesktop®
Applies to versions: 7.6
EnginFrame plugin for XenDesktop® requires NICE Neutro to submit delegate sessions (see the
section called “Distributed Resource Managers” for more info about NICE Neutro).

• Neutro Agent must run as XenDesktop® administrator user on the same host where the
XenDesktop® Delivery Controller is running.

• The host where XenDesktop® Delivery Controller is running must be tagged as
XenDesktopController in the Neutro Master configuration file $NEUTRO_ROOT/
conf/hosttags.conf.

• XenDesktop® tasks must be added into the NICE Neutro Master installation tree.
Copy task-interactive-xendesktop.xml file into the Neutro Master task
repository and set right permissions:

cp $EF_ROOT/plugins/xendesktop/etc/neutro_tasks/task-repository/
 task-interactive-xendesktop.xml \
 $NEUTRO_ROOT/task-repository/task-interactive-xendesktop.xml

chown <neutroadmin>:root \
 $NEUTRO_ROOT/task-repository/task-interactive-xendesktop.xml

mailto:helpdesk@nice-software.com

Third-party Software Prerequisites

28 EnginFrame Administrator's Guide

• Create the directory to store the files required by XenDesktop® task:

mkdir $NEUTRO_ROOT/task-repository/task-interactive-xendesktop

• Copy XenDesktop® task files and set right permissions:

cp $EF_ROOT/plugins/xendesktop/etc/neutro_tasks/task-repository/
 task-interactive-xendesktop/* \
 $NEUTRO_ROOT/task-repository/task-interactive-xendesktop

chown -R <neutroadmin>:root \
 $NEUTRO_ROOT/task-repository/task-interactive-xendesktop

• XenDesktop® Web Interface library must be added to the EnginFrame XenDesktop® plugin
installation tree.
Download the Web Interface 5.4 for Java Application Servers library
from Citrix® Website (registration or login is required).

• Uncompress the WebInterface.jar and look for the PNAgent.war on it.

jar -xvf WebInterface.jar

• Uncompress PNAgent.war file, copy jar files from PNAgent.war archive into
XenDesktop® plugin jars folder and set right permissions:

jar -xvf PNAgent.war

cp <uncompressed PNAgent folder>/WEB-INF/lib/*.jar \
 $EF_ROOT/plugins/xendesktop/lib/jars/

chmod +r $EF_ROOT/plugins/xendesktop/lib/jars/*

• EnginFrame users must be in the same Active Directory domain used by XenDesktop®.
EnginFrame uses users provided password to log in to XenDesktop®.

• Clients require Citrix Receiver™ application to connect to XenDesktop® sessions.

Remote Visualization Technologies

EnginFrame supports different remote visualization technologies, and the same EnginFrame instance
can manage multiple of them. Please refer to the following table for the supported ones.

Table 3.5. Supported Remote Visualization Technologies

Name Version Notes

RealVNC® Enterprise Edition 4.x or 5.x It allows to share sessions both in full access
or view only mode.

https://www.citrix.com/downloads/storefront-web-interface/product-software/web-interface-54-for-java-application-servers.html

Third-party Software Prerequisites

EnginFrame Administrator's Guide 29

Name Version Notes

TigerVNC 1.x Linux® only (server side).

TurboVNC 1.x or 2.x Linux® only (server side).

RealVNC® Free Edition 4.x Linux® only (server side).

NICE DCV 2012.0 or
later

It allows to share sessions both in full access
or view only mode.

VirtualGL 2.1 or later

HP® RGS 5.x, 6.x or 7.x Please refer to EnginFrame Administrator's
Guide for more information on how to set up
your DRM system on Linux® nodes to work
with HP® RGS.

Citrix Receiver™ 4.5 Windows® only (server side).

For detailed instructions on how to install and configure these remote visualization technologies
please refer to their respective manuals.

Support for additional remote visualization technologies is available via optional plugins. Contact
<helpdesk@nice-software.com> for more information.

Remote Visualization Technologies Configuration

NICE DCV 2017.0 or later on Linux

For Linux environments the configuration of the authentication to use with NICE DCV must
correspond to the authentication system set on the DCV server in the remote visualization hosts.

On EnginFrame the authentication to use with DCV on Linux can be set in the
INTERACTIVE_DEFAULT_DCV2_LINUX_AUTH configuration parameter inside the $EF_TOP/
conf/plugins/interactive/interactive.efconf file.
Default value and documentation can be found in the static configuration file $EF_TOP/
<VERSION>/enginframe/plugins/interactive/conf/interactive.efconf.

The auto authentication system, providing seamless authentication with self-generated strong
passwords, requires the following configuration on the visualization hosts running the DCV server:

• The DCV simple external authenticator provided with NICE DCV must be installed and running.

The simple external authenticator installation package is distributed as an rpm, e.g. nice-dcv-
simple-external-authenticator-2017.x...x86_64.rpm.

Once installed you can manage the service as root user:

• On systems using SystemD (e.g. RedHat 7):

systemctl [start|stop|status] dcvsimpleextauth

mailto:helpdesk@nice-software.com

Network Requirements

30 EnginFrame Administrator's Guide

• On systems using SysVInit (e.g. RedHat 6):

/etc/init.d/dcvsimpleextauth [start|stop|status]

• The DCV server must be configured to use the simple external authenticator
dcvsimpleextauth instance running on the same host, e.g. inside /etc/dcv/dcv.conf,
under the security section, there should be a setting like this:

[security]
auth-token-verifier="http://localhost:8444"

• Restart the DCV server after any changes made to /etc/dcv/dcv.conf configuration file.

NICE DCV 2017.0 or later on Windows

For Windows environments the configuration of the authentication to use with NICE DCV
must be configured on EnginFrame in the INTERACTIVE_DEFAULT_DCV2_WINDOWS_AUTH
configuration parameter inside the $EF_TOP/conf/plugins/interactive/
interactive.efconf file.
Default value and documentation can be found in the static configuration file $EF_TOP/
<VERSION>/enginframe/plugins/interactive/conf/interactive.efconf.

The auto authentication system, providing seamless authentication with self-generated strong
passwords, does not require any other configuration on the visualization hosts running the DCV
server.

The DCV server service is managed by the interactive session job landing on the node:

• If the DCV server service is not running, it will be started.

• If the DCV server service is running but with different authentication configuration than the one set
on the EnginFrame side, the configuration will be changed and the service restarted. This includes
the case when the DCV server is configured to automatically launch the console session at system
startup. This setting will be removed by the interactive session job.

• If DCV session is running but there is no logged user, the session will be closed by the interactive
session job.

• It is not possible to submit an interactive session to a node with a DCV session running and a user
logged in.

Network Requirements

 EnginFrame is a distributed system. Your network and firewall configuration must allow EnginFrame
components to communicate with each other and with user's browsers.

The specific requirements depend on how EnginFrame is deployed on your system. Please refer to
EnginFrame Administrator's Guide for more detailed information. The following table summarizes
network requirements for a basic EnginFrame deployment.

Supported Browsers

EnginFrame Administrator's Guide 31

Table 3.6. Network Requirements

Port (Default) Protocol From Host To Host Mandatory

8080/8443 HTTP/HTTPS User's clients EnginFrame
Server

Mandatory

9999 and 9998 RMI (TCP) EnginFrame
Server

EnginFrame
Agent

Optional 1

8080/8443 HTTP/HTTPS EnginFrame
Agent

EnginFrame
Server

Optional1

7800 TCP EnginFrame
Server

EnginFrame
Server

Mandatory only
for EnginFrame
Enterprise2

1Required if EnginFrame Agent and EnginFrame Server run on separate hosts
2EnginFrame Servers use the port to communicate with each other

Supported Browsers

NICE EnginFrame produces HTML which can be viewed with most popular browsers. NICE
EnginFrame has been tested with the browsers listed in Table 3.7, “Supported Browsers”.

Table 3.7. Supported Browsers

Name Version Notes

Microsoft® Internet
Explorer®

10 and 11

Mozilla Firefox® 3.6 and above

Apple® Safari® 6.0 and above
and iOS 6
version

Tested on Mac® OS X® and iPad® only.

Google™ Chrome™ 25 and above

JavaScript® and Cookies must be enabled on browsers.

Interactive Plugin Requirements

Interactive Plugin requires the following components to be successfully installed and configured:

• at least one supported resource manager software, see the section called “Distributed Resource
Managers” or a session broker software, see the section called “Session Brokers”

• at least one supported remote visualization middleware, see the section called “Remote
Visualization Technologies”

To use the Interactive Plugin, a proper license must be installed on the EnginFrame Server.

Each node running interactive sessions should have all the necessary software installed. On Linux®
this usually means the packages for the desired desktop environment (gnome, kde, xfce, etc).

Interactive Plugin Requirements

32 EnginFrame Administrator's Guide

In addition, to let the portal show screen thumbnails in the session list, the following software must
be installed and available in the system PATH on visualization nodes:

• Linux®: ImageMagick tool (http://www.imagemagick.org) and the xorg-x11-apps,
xorg-x11-utils packages

• Windows®: NICE Shot tool (niceshot.exe available under $EF_TOP/<VERSION>/
enginframe/plugins/interactive/tools/niceshot). Not required on NICE
Neutro hosts since Neutro Agent installer already includes it.

Single Application Desktop Requirements (Linux®)

Sometimes you may prefer to run a minimal session on your interactive nodes consisting in a minimal
desktop and a single application running. In that case, instead of installing a full desktop environment
like GNOME or KDE, you may want to only install some basic required tools, a Window manager,
a dock panel and the applications you intend to use.

For this intent the minimal.xstartup script can be configured to be a Window Manager choice
for the Applications and Views service editors.
Here is a reference list of the tools used by the minimal.xstartup file provided by EnginFrame
under $EF_TOP/<VERSION>/enginframe/plugins/interactive/conf:

• basic tools: bash, grep, cat, printf, gawk, xprop

• window managers: metacity, kwin (usually provided by package kdebase), xfwm4

• dock panels: tint2, fluxbox, blackbox, mwm (usually provided by package openmotif
or lesstif or motif)

Shared File System Requirements

Depending on the deployment strategy, EnginFrame may require some directories to be shared
between the cluster and EnginFrame nodes. This guide covers the simplest scenario where both
EnginFrame Server and EnginFrame Agent run on the same host. For more complex configurations
or to change the mount points of the shared directories, please check the "Deployment Strategies"
section in the EnginFrame Administrator's Guide.

In this scenario the EnginFrame Server, EnginFrame Agent and visualization nodes may require the
$EF_TOP/sessions directory to be shared. Please refer to the following table to check if you
need to share this directory or not.

Table 3.8. Shared File-System Requirement

Distributed Resource Manager Linux® Windows®

NICE Neutro - Not required

IBM® Platform™ LSF® Not required Not required

OpenLava Not required -

SLURM™ Required -

Adaptive Computing® Moab® Web Services (MWS) Required -

http://www.imagemagick.org

EnginFrame Enterprise System
Requirements

EnginFrame Administrator's Guide 33

Distributed Resource Manager Linux® Windows®

Torque Required -

Altair® PBS Professional® Required -

Grid Engine (SGE, SoGE, OGE, UGE) Required -

EnginFrame Enterprise System Requirements

This documents lists the hardware and software prerequisites for an EnginFrame Enterprise
installation.

Shared File System

As explained in the section called “Architecture” the suggested and supported approach to
EnginFrame Enterprise deployment involves a shared file-system for the whole $EF_TOP directory
tree. With this approach you are able to install and manage the software from just one node and all the
binaries and data directories as spoolers, sessions, license, etc. will be shared among the installation
nodes. High-Availability of the Shared File System shall be consistent with the overall HA/Disaster
Recovery strategy.

The NFS no_root_squash or equivalent feature must be active in order to allow the correct
management of permissions and ownership of deployed files.

It is strongly suggested to enable on the shared file system the NFS no_wdelay or equivalent feature
(server-side) in order to minimize the file writing delay between clients.

Network Load Balancing

In order to ensure automated load balancing and HA of the EnginFrame services it is necessary to
setup a network load balancer that dispatches users' requests to the EnginFrame Servers in a balanced
way.

EnginFrame requires the load balancer to implement a sticky session strategy. There are many open
source and commercial solutions to implement a network load balancer.

Please refer to the section called “Load Balancer Setup” for examples of configuration with Apache®
front-end.

Deployment Strategies
 If the prerequisites are met, you must decide how to deploy NICE EnginFrame on your system.

As described in the section called “Architectural Overview” EnginFrame is made of two main
software components: the EnginFrame Server and the EnginFrame Agent.

These two components can be deployed on the same host or on different hosts that communicate
across the network. The choice depends on your computational resources organization, on your
network architecture, and on your security and performance requirements, as long as these constraints
are met:

• EnginFrame Server host must be reachable via HTTP(S) by the clients and the EnginFrame Agents.

Installation Directories

34 EnginFrame Administrator's Guide

• EnginFrame Agent host must have access to your computational resources and your grid
infrastructure (e.g. submitting jobs to your scheduler).

• EnginFrame Server and EnginFrame Agent must be installed on a shared storage area.

• For the interactive sessions, EnginFrame Server and EnginFrame Agent must have read/write
access to a storage area shared among them and with the visualization nodes too.

In the simplest scenario both EnginFrame Server and EnginFrame Agent run on the same host,
which ensures that communication between the two is reliable and minimizes administration efforts.
This scenario is also suggested for an EnginFrame Enterprise deployment where you have multiple
EnginFrame installations on different hosts but on each of the hosts you install both an EnginFrame
Server and Agent, as described in the section called “Deployment”. Network communication among
EnginFrame Servers must also be assured.

In other cases you may want to install EnginFrame Server and EnginFrame Agent on separate hosts.
For instance you want to run the EnginFrame Server in DMZ and EnginFrame Agent on the head
node of your cluster. In these cases you must consider some extra requirements:

• Agent and Server must be able to communicate through a TCP connection using the Java™ RMI
protocol. The relevant TCP ports that are 9999 for RMI Registry and 9998 for Remote Object,
must be free on the Agent's host and reachable from the Server host.

• Agent and Server must be able to communicate through a TCP connection using the HTTP(S)
protocol. The relevant TCP port (which by default is 8080/8443 for HTTP/HTTPS respectively)
on the Server's host must be reachable from the Agent host.

• Agent and Server must be installed on a shared storage area. In particular:

• the spoolers directory must reside on a storage area satisfying the requirements described in the
section called “Spoolers Requirements”

• the sessions directory must reside on a storage area satisfying the requirements described in the
section called “Sessions Requirements”

In a scenario where you need to access the system through a DMZ, it's a common practice to use
an Apache® Web Server as front-end in the DMZ while EnginFrame is deployed on the intranet.
This scenario comes even more natural with EnginFrame Enterprise if you're going to use Apache®
Server as network load balancer in front of a battery of EnginFrame Servers. In all these cases the
EnginFrame Server is behind the Apache® Web Server that forwards all the EnginFrame requests to
the Tomcat® servlet container of the EnginFrame deployment. Refer to the section called “Apache®-
Tomcat® Connection” for details on this configuration.

About security in the communications, EnginFrame by default uses Java RMI over SSL protocol
between Server and Agent and allows to setup Tomcat® at installation time to use HTTPS. It's also
possible to enable HTTPS protocol at a later time as described in Chapter 13, Configuring HTTPS.

Installation Directories
 The next thing to consider are the directories where NICE EnginFrame is deployed.

The installation directory is the location, hereafter referred to as $NICE_ROOT, where EnginFrame
binaries, configuration files, and logs are placed.

The installation creates under $NICE_ROOT the following directory structure:

http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/index.html

Installation Directories

EnginFrame Administrator's Guide 35

 NICE_ROOT
 `-- enginframe
 |-- 2017.2-rXXXXX
 | `-- enginframe
 |-- current-version
 |-- bin
 | `-- enginframe
 |-- install
 | `-- 2017.2-rXXXXX
 |-- license
 | `-- license.ef
 |-- conf
 | |-- enginframe.conf
 | |-- enginframe
 | | |-- certs
 | | |-- server.conf
 | | `-- agent.conf
 | |-- tomcat
 | | `-- conf
 | | `-- certs
 | |-- derby
 | | |-- derby.properties
 | | `-- server.policy
 | `-- plugins
 |-- data
 | |-- cache
 | |-- derby
 | | `-- EnginFrameDB
 | `-- plugins
 |-- logs
 | `-- <HOSTNAME>
 | |-- *.log
 | |-- tomcat
 | `-- derby
 |-- repository
 |-- sessions
 |-- spoolers
 `-- temp
 `-- <HOSTNAME>
 |-- dumps
 |-- errors
 `-- tomcat

The following names will be used in this guide to refer to the different parts of the EnginFrame
installation tree:

NICE_ROOT
The directory containing NICE products, the default is /opt/nice

EF_TOP
The directory containing the EnginFrame product, the default is NICE_ROOT/enginframe

EF_LICENSE_PATH
The directory containing the EnginFrame license files, the default is EF_TOP/license

EF_CONF_ROOT
The directory containing the EnginFrame configuration files, the default is EF_TOP/conf

Special Users

36 EnginFrame Administrator's Guide

EF_DATA_ROOT
The directory containing the data files, the default is EF_TOP/data

EF_LOGS_ROOT
The directory containing the log files, the default is EF_TOP/logs

EF_TEMP_ROOT
The directory containing the temporary files, the default is EF_TOP/tmp

EF_REPOSITORYDIR
The directory containing the EnginFrame repository files, the default is EF_TOP/repository

EF_SPOOLERDIR
The directory containing the EnginFrame spoolers, the default is EF_TOP/spoolers

INTERACTIVE_SHARED_ROOT
The directory containing the EnginFrame interactive sessions, the default is EF_TOP/
sessions

EF_ROOT
The directory containing the EnginFrame binaries and system files, the default is EF_TOP/
<VERSION>/enginframe

suid binaries

PAM based authentication method shipped with EnginFrame requires that
some binaries have the suid bit set in order to interact with the underlying
system to authenticate users.

If you plan to use this authentication method, ensure the file system hosting
EnginFrame is mounted with nosuid flag unset.

The EF_SPOOLERDIR directory is used to hold all the data supplied as input and created as output
by EnginFrame services.

As already mentioned, the spooler directory must be accessible by both the EnginFrame Server and
EnginFrame Agent and must be readable and writable by unprivileged users (see below) and by root.

By default, the spooler directory is placed in a sub-directory of the installation directory.

Chapter 7, Managing Spoolers contains a detailed description of the system requirements for the
spoolers directory.

Special Users
 You have to choose which system accounts EnginFrame has to use.

The EnginFrame Administrator is a special system account owning some privileges, for instance the
possibility to access the EnginFrame monitor/administration portal and some of the configuration
files. From now on, this account is referred as EF_ADMIN.

You have also to choose the account that should run Tomcat®, from now on referred as EF_NOBODY
in the document.

Authentication

EnginFrame Administrator's Guide 37

The configuration files with sensitive information that are meant to be read only by EnginFrame
Server are owned by EF_NOBODY with no allowed permissions for the group and other users.
Restricted ownership and permissions apply also to the $EF_TOP/logs directory since logs files
may also contain sensitive information.

Any existing system account excluding root can be specified, however it is good practice to set up
two new dedicated users for these roles.

Conventionally efadmin and efnobody are respectively used for EF_ADMIN and EF_NOBODY.

EnginFrame Accounts

EF_ADMIN and EF_NOBODY must be operating system valid accounts: you
must be able to login to the system with those accounts and they must not be
disabled.

Authentication
 The last aspect you need to consider before installing EnginFrame is which authentication method
to use.

EnginFrame is able to authenticate users using many different mechanisms, among which PAM,
LDAP, ActiveDirectory, HTTP Basic Authentication and Certificate.

You can also write your own authentication module if the ones shipped by EnginFrame do not suit
your needs.

Chapter 11, Authentication Framework contains a detailed information about EnginFrame
Authentication System.

DRM Configuration for Interactive Plugin
The following sections describe the additional requirements of the Interactive Portal.

Important

EnginFrame periodically checks the status of the interactive jobs using the
EF_ADMIN user account.

Therefore this account MUST be able to get information from all the DRMs.

Usually the simplest way to achieve it is by making this account one of the
resource manager administrators.

A misconfiguration of this account can lead to interactive session data loss.

Note

When the resource manager controls mixed Windows® clusters, Interactive
Plugin will submit interactive session jobs on Windows® hosts as the user

NICE Neutro

38 EnginFrame Administrator's Guide

running EnginFrame Server (efnobody by default). Consequently this
MUST be a valid Windows® user.

NICE Neutro

Interactive Plugin relies on the NICE Neutro workload manager, to allocate and reserve resources
to run the interactive sessions. The integration does not require any extra setting. For details about
NICE Neutro, please refer to NICE Neutro installation guide.

IBM® Platform™ LSF® or OpenLava

Interactive Plugin relies on the LSF® workload manager, to allocate and reserve resources to run the
interactive sessions. Installation and configuration instructions for LSF® are out of the scope of this
document, however Interactive Plugin requires some specific LSF® settings.

Here is a minimal configuration necessary to run Interactive Plugin sessions on your LSF® cluster.
If needed they can be enhanced or combined with your existing LSF® configuration to achieve more
complex resource sharing policies.

Configuring Queues

Interactive Plugin uses resource manager's queues to submit and manage interactive sessions. You
can set up Interactive Plugin to use a default queue and set different services to use different queues,
it is however important that the queues used for any visualization middleware or target system have
the following settings:

• The EnginFrame Administrator account (usually efadmin) must be queue administrator of any
queue used by Interactive Plugin.

• Queues for HP® RGS sessions need to have HJOB_LIMIT set to one, since only one HP® RGS
session can run on each host.

• Queues for HP® RGS Linux® sessions need to have PRE_EXEC and POST_EXEC respectively
set to the rgs.preexec.sh and rgs.postexec.sh scripts, located under $EF_TOP/
<VERSION>/enginframe/plugins/interactive/tools folder.

Here is a configuration snippet for these queues in lsb.queues. You might not need to have all of
these queues configured. You can adapt the parameters as you wish, given the above requirements.

IBM® Platform™ LSF® or
OpenLava

EnginFrame Administrator's Guide 39

Begin Queue
QUEUE_NAME = int_linux
PRIORITY = 50
EXCLUSIVE = y
NEW_JOB_SCHED_DELAY = 0
JOB_ACCEPT_INTERVAL = 0
ADMINISTRATORS = efadmin
HOSTS = viz1 vizlin01 vizlin02
DESCRIPTION = Queue for linux interactive applications
End Queue

Begin Queue
QUEUE_NAME = int_windows
PRIORITY = 50
EXCLUSIVE = y
NEW_JOB_SCHED_DELAY = 0
JOB_ACCEPT_INTERVAL = 0
ADMINISTRATORS = efnobody
HOSTS = win_grp
DESCRIPTION = Queue for windows interactive applications
End Queue

Begin Queue
QUEUE_NAME = rgs_linux
PRIORITY = 50
EXCLUSIVE = y
NEW_JOB_SCHED_DELAY = 0
JOB_ACCEPT_INTERVAL = 0
HJOB_LIMIT = 1
ADMINISTRATORS = efadmin
HOSTS = viz2 vizlin03 vizlin04
PRE_EXEC = /opt/nice/enginframe/plugins/interactive/tools/rgs.preexec.sh
POST_EXEC = /opt/nice/enginframe/plugins/interactive/tools/rgs.postexec.sh
DESCRIPTION = Queue for RGS linux sessions
End Queue

Begin Queue
QUEUE_NAME = rgs_windows
PRIORITY = 50
EXCLUSIVE = y
NEW_JOB_SCHED_DELAY = 0
JOB_ACCEPT_INTERVAL = 0
HJOB_LIMIT = 1
ADMINISTRATORS = efnobody
DESCRIPTION = Queue for RGS windows sessions
End Queue

Finally the pre and post execution scripts for HP® RGS Linux® sessions need to run as root. This
means that the /etc/lsf.sudoers file on all the LSF® nodes must contain the following line:

LSB_PRE_POST_EXEC_USER=root

Note

Make sure /etc/lsf.sudoers is owned by root and has permissions
600 otherwise LSF® will ignore its contents.

IBM® Platform™ LSF® or
OpenLava

40 EnginFrame Administrator's Guide

After you modify /etc/lsf.sudoers, you must run

badmin hrestart all

to restart sbatchd on all nodes in the cluster.

Note

To specify the default rgs queues inside interactive
you can edit the $EF_TOP/conf/plugins/interactive/
interactive.efconf file and add the following two lines.

INTERACTIVE_DEFAULT_RGS_LINUX_QUEUE=rgs_linux
INTERACTIVE_DEFAULT_RGS_WINDOWS_QUEUE=rgs_windows

Important

By default, every pre/post exec script runs with the credentials of the owner of
the job. Once this configuration is applied, all the pre/post execution scripts
configured in LSF® at queue level (lsb.queues) or at application level
(lsb.applications) will be executed with the root account. The impact
on security and functionality must be analyzed case by case.

In alternative it is also possible to configure the sudo command to run pre and
post execution scripts as a normal user with privileges to run as root only
specific operations.

Requirements on scheduler tools

In order to properly operate with interactive sessions on the target operating systems, EnginFrame
relies on some tools provided by LSF® and OpenLava schedulers. The scheduler must then be
properly configured in order to make these tools working effectively on the hosts of the cluster.

Here the list of LSF® and OpenLava tools required by EnginFrame:

• Windows sessions scheduled with LSF® require lsrun and lsrcp.

• Linux® sessions via LSF® or OpenLava require lsrun.

Important

In the recent LSF® versions (i.e. from 9.1) the lsrun command comes
disabled by default. This configuration can be changed by editing file
LSF_TOP/conf/lsf.conf and setting:

LSF_DISABLE_LSRUN=N

Torque or PBS Professional®

EnginFrame Administrator's Guide 41

After this change the LIM daemon must be asked to reload the configuration,
as scheduler administrator running the following command:

lsadmin reconfig

Additional requirements for Windows® sessions

To be able to launch Windows® interactive sessions through LSF®, there are additional requirements
for the user runnng EnginFrame server (default efnobody). In all Windows® hosts, this user must
be able to:

• read and write Windows® registry keys.

• start and stop Windows® services.

• read and write under LSF top directory.

These privileges enable that user to start, stop and control remote visualization middlewares servers
launched on the Windows® hosts.

These requirements do not imply that the user running EnginFrame server must be a Windows®
administrator, even if they are automatically granted to a Windows® XP one.

Important

Under Windows® 7 or later, these requirements are not automatically granted
to administrators. For this reason, Windows® 7 system administrators should
either manually grant these priviledges to that user only, or completely disable
the User Account Control (UAC) for everybody.

OpenLava 3.0 or above

From version 3.0 OpenLava introduced bpost command that is not compatible with the same LSF
command.

To use OpenLava 3.0 or above with EnginFrame please configure the system to use a shared file
system for the $INTERACTIVE_SHARED_ROOT directory whose default value is $EF_TOP/
sessions.

Then you need to edit the configuration file $EF_TOP/conf/plugins/lsf/ef.lsf.conf to
apply the following setting:

LSF_INTERACTIVE_USE_SHARED_FS="true"

Alternatively, to avoid using a shared file system for the sessions directory, you need to remove
or rename the bpost executable in the OpenLava binary directory.

Torque or PBS Professional®

Interactive Plugin relies on the PBS Professional® workload manager, to allocate and reserve
resources to run the interactive sessions. Installation and configuration instructions for PBS

SGE, Oracle® Grid Engine (OGE),
Son of Grid Engine (SoGE) or
Univa® Grid Engine® (UGE)

42 EnginFrame Administrator's Guide

Professional® are out of the scope of this document, however Interactive Plugin requires some
specific PBS Professional® settings.

Here is a minimal configuration needed to run Interactive Plugin sessions on your PBS Professional®
cluster. If needed they can be enhanced or combined with your existing PBS Professional®
configuration to achieve more complex resource sharing policies.

Configuring Queues

Interactive Plugin uses resource manager's queues to submit and manage interactive sessions. You
can set up Interactive Plugin to use a default queue and set different services to use different queues,
it is however important that the queues used for any visualization middleware or target system have
the following settings:

• The EnginFrame Administrator account (usually efadmin) must be able to see, start and kill jobs
of any queue used by Interactive Plugin.

• You need to force the limit of 1 job per host for HP® RGS queues, since only one HP® RGS
session can run on each host.

• Queues for HP® RGS Linux® sessions need to have prolog and an epilog respectively
set to the rgs.preexec.sh and rgs.postexec.sh scripts, located under $EF_TOP/
<VERSION>/enginframe/plugins/interactive/tools folder. So you might want to
copy or link them into ${PBS_HOME}/mom_priv of each execution host.

Here is a sample configuration of the interactive queue

qmgr
Max open servers: 49
Qmgr: create queue interactive
set queue interactive queue_type = Execution
set queue interactive resources_default.arch = linux
set queue interactive enabled = True
set queue interactive started = True

SGE, Oracle® Grid Engine (OGE), Son of Grid Engine (SoGE) or Univa® Grid
Engine® (UGE)

Interactive Plugin relies on the SGE workload manager, to allocate and reserve resources to run the
interactive sessions. Installation and configuration instructions for SGE are out of the scope of this
document, however Interactive Plugin requires some specific SGE settings.

Here is a minimal configuration needed to run Interactive Plugin sessions on your SGE cluster. If
needed they can be enhanced or combined with your existing SGE configuration to achieve more
complex resource sharing policies.

Configuring Queues

Interactive Plugin uses resource manager's queues to submit and manage interactive sessions. You
can set up Interactive Plugin to use a default queue and set different services to use different queues,
it is however important that the queues used for any visualization middleware or target system have
the following settings:

Adaptive Computing® Moab®

EnginFrame Administrator's Guide 43

• The EnginFrame Administrator account (usually efadmin) must be queue administrator of any
queue used by Interactive Plugin.

• To make available to Interactive Plugin scripts the necessary system command line
tools and environment, SGE queues used also need the following requirement: either
shell_start_mode queue parameter has to be set to unix_behavior or, if the same
parameter is set to posix_compliant , then the shell parameter must be set to /bin/bash.

• You need to force the limit of 1 job per host for HP® RGS queues, since only one HP® RGS
session can run on each host.

• Queues for HP® RGS Linux® sessions need to have prolog and an epilog respectively
set to the rgs.preexec.sh and rgs.postexec.sh scripts, located under $EF_TOP/
<VERSION>/enginframe/plugins/interactive/tools folder. They must also be
run as root, since HP® RGS needs to operate on runlevels, so you might want to have something
like:

prolog root@/path/to/enginframe/plugins/interactive/tools/rgs.preexec.sh

in the queue configuration.

Adaptive Computing® Moab®

In this scenario, Interactive Plugin relies on Moab® workload manager to allocate and reserve
resources to run the interactive sessions.

Interactive Plugin requires that the user running EnginFrame Server (usually efadmin) is a Moab®
administrator, in particular it must be able to check the status and query all Moab® jobs.

For example, it is possible to define efadmin as Level 2 Moab® Admin (Operator Access) by adding:

ADMINCFG[3] USERS=efadmin

in moab.cfg configuration file.

EnginFrame Interactive Plugin requires Moab® Web Services (MWS) to communicate with Moab®.

SLURM™

In this scenario, Interactive Plugin relies on SLURM™ Workload Manager to allocate and reserve
resources to run the interactive sessions.

Interactive Plugin requires that Features vnc,dcv,dcv2 have been defined on SLURM™ configuration
and that every allowed user must be able to check the status and query all SLURM™ jobs and
partitions (alias queues). 'dcv2' stands for DCV since 2017.

Also, Interactive Plugin requires that RealMemory (in MB units) parameter has been defined on
SLURM™ configuration for every execution node, in order to show the correct maximum value of
Memory.

EnginFrame Administrator's Guide 45

4
Installing NICE EnginFrame

EnginFrame is distributed with an installer that guides you through the setup procedure making the
installation straightforward. The installer is the EnginFrame package itself. Refer to the section called
“Downloading EnginFrame” for instructions on getting your EnginFrame package.

Installing
You can use a graphical and a text based installer, where the latter is useful when installing on
machines where you do not have access to an X Window System.

Unprivileged User Installation

Normally you would install EnginFrame as root.

Installation as an unprivileged user is possible, but has the following
limitations:

• You cannot use authentication mechanisms that need root privileges, e.g.
PAM.

• All services are executed as the user installing EnginFrame Agent.

Please be sure the umask is 022 before launching the installation commands.

Assuming Java™ is available in your PATH, to start the graphical installer simply run as root:

java -jar enginframe-2017.2.x.y.jar

The graphical installer guides you through the installation procedure. If the X Window System is not
available, the installer falls back to the text based one.

The user interface of the text based installer can be started by simply specifying text argument on
the command line:

java -jar enginframe-2017.2.x.y.jar --text

Batch Installation

46 EnginFrame Administrator's Guide

The installer shows you the terms of the license agreement and prompts you for a valid license file.
If you do not have a valid license file, refer to the section called “Obtaining a License”.

The installer then prompts you with some questions to tailor the EnginFrame deployment to your
needs.

After asking all the questions the installer shows you a summary of your answers; this is when
you can change values before installing. Once summary is accepted, the installer proceeds to set up
EnginFrame on current host.

Note

When installing using a Java™ Runtime Environment the following warning
may appear in the output:

Unable to locate tools.jar. Expected to find it in [...]

This warning is harmless and can be safely ignored.

After installation finishes EnginFrame is ready to be used. Refer to Chapter 5, Running NICE
EnginFrame to learn how to start your EnginFrame Portal and test your installation.

A file named efinstall.config is saved in the directory from which you launched the installer.
This files contains the options you specified during installation. This file may be useful to document
how you installed EnginFrame as well as to replicate installation in batch mode without requiring
user interactions.

Distributed Deployment

If you want to run Server and Agent on different hosts, launch the installer on
the Server host and select a shared installation directory. The installer will ask
if the Server and Agent will run on different hosts.

Batch Installation

Batch installation allows to easily replicate an installation on different hosts taking as input a
configuration file created during a normal install. To run the EnginFrame installer in batch mode
simply run

java -jar enginframe-2017.2.x.y.jar --batch -f efinstall.config

if you do not specify the -f option the installer searches for a file named efinstall.config
in the current directory.

Unless errors occur, EnginFrame installer completes the installation procedure without requiring
further user input.

Fine Tuning Your Installation

Spooler Download URL

EnginFrame Administrator's Guide 47

Sometimes it is useful to fine tune your installation to make sure EnginFrame is performing at its best
on your system or to customize EnginFrame behavior to match your needs.

Spooler Download URL

The EnginFrame Agent needs to communicate with EnginFrame Server when downloading a file
from a spooler. In some network configurations and architectures - especially in the case a Web Server
is placed if front of the EnginFrame Server - this callback URL has to be explicitly configured.

If downloading files from your EnginFrame Portal does not work properly, refer to the section called
“Configure Download URL on Agent” for configuring EnginFrame Agent callback URL.

Optimizing JDK Options

The SERVER_JAVA_OPTIONS and AGENT_JAVA_OPTIONS options in
$EF_TOP/conf/enginframe.conf contain command line options passed to JDKs starting
respectively EnginFrame Server and EnginFrame Agent. Sometimes tweaking some of those values
might be necessary, for instance in some cases it is useful to expand the size of the JVM heap (memory
used for dynamic data allocation): this can be done by changing the -Xmx option. The following
example sets heap size for Agent to 200 MB

AGENT_JAVA_OPTIONS="--Xms200m -Xmx200m -XX:MaxPermSize=50m \
-Djava.rmi.server.hostname=localhost -Djava.net.preferIPv4Stack=true \
-Dsun.rmi.dgc.client.gcInterval=3600000 \
-Dsun.rmi.dgc.server.gcInterval=3600000"

Distributed Resource Manager Options

Cluster Name Label

All grid plug-ins in EnginFrame support the option to specify a custom label to be used by the portal
to show the name of the clusters.

Change the grid plug-in cluster name by specifying in the plug-in configuration file the [PLUGIN-
ID]_CLUSTER_LABEL options:

• $EF_TOP/conf/plugins/lsf/ef.lsf.conf: LSF_CLUSTER_LABEL=...

• $EF_TOP/conf/plugins/moabws/moabws.efconf:
MOABWS_CLUSTER_LABEL=...

• $EF_TOP/conf/plugins/pbs/ef.pbs.conf: PBS_CLUSTER_LABEL=...

• $EF_TOP/conf/plugins/torque/ef.torque.conf:
TORQUE_CLUSTER_LABEL=...

• $EF_TOP/conf/plugins/sge/ef.sge.conf: SGE_CLUSTER_LABEL=...

• $EF_TOP/conf/enginframe/plugins/slurm/ef.slurm.conf:
SLURM_CLUSTER_LABEL=...

Interactive Plugin

48 EnginFrame Administrator's Guide

• $EF_TOP/conf/plugins/neutro/neutro.efconf:
NEUTRO_CLUSTER_LABEL=...

Interactive Plugin

Distributed Resource Manager

The EnginFrame installer configures the Interactive Plugin depending on the resource manager
selection at installation time. In case you want to change this setting the related configuration
parameters are located into Interactive Plugin main configuration file: $EF_TOP/conf/
plugins/interactive/interactive.efconf.

The parameters are named INTERACTIVE_DEFAULT_LINUX_JOBMANAGER and
INTERACTIVE_DEFAULT_WINDOWS_JOBMANAGER. You can set their values to:

• lsf - sessions are scheduled by LSF® (both Windows® and Linux®) or OpenLava (Linux®-only).

• neutro - sessions are scheduled by NICE Neutro. (Windows®-only)

• pbs - sessions are scheduled by PBS Professional®.

• moabws - sessions are scheduled by Moab® Web Services. (Linux®-only)

• torque - sessions are scheduled by Torque. (Linux®-only)

• sge - sessions are scheduled by Sun® Grid Engine, Oracle® Grid Engine (OGE), Univa® Grid
Engine® (UGE), Son of Grid Engine (SoGE) or Open Grid Scheduler.

You can override this behaviour on per-EnginFrame service basis by using --jobmanager option
of interactive.submit session starter script.

Remote Visualization Technology

By default, Interactive Plugin is set to use VNC® remote visualization technology. In case you want
to change this setting, the related configuration parameter is located into Interactive Plugin main
configuration file: $EF_TOP/conf/plugins/interactive/interactive.efconf.

The parameter is named INTERACTIVE_DEFAULT_REMOTE. You can set its value to one of the
following:

• vnc - manage RealVNC®, TurboVNC, TigerVNC sessions.

• dcv - manage NICE DCV (up to 2016.0) 3D accelerated sessions.

• dcv2 - manage NICE DCV (since 2017.0) 3D accelerated sessions.

• rgs - manage HP® RGS sessions.

• virtualgl - manage VirtualGL sessions.

You can override this behaviour on per-EnginFrame service basis by using --remote option of
interactive.submit session starter script.

EnginFrame Enterprise Installation

EnginFrame Administrator's Guide 49

EnginFrame Enterprise Installation

Load Balancer Setup

EnginFrame Enterprise requires a load balancer implementing the sticky session strategy.

The following sections describe a common solution based on AJP connector and Apache® Web
Server frontend with mod_proxy_balancer module.

Configure AJP Connector

Enable the AJP Connector on Tomcat®:

• Login as root on the node of EnginFrame Server:

cd $EF_TOP/conf/tomcat/conf

• Open server.xml file and uncomment the section that defines the AJP 1.3 connector.

<Connector
 port="8009"
 enableLookups="false"
 redirectPort="8443"
 protocol="AJP/1.3"
 URIEncoding="utf-8" />

If port 8009 is used by another application, then you must choose another value.

Configure Apache® Proxy

To enable Reverse Proxy Support in Apache® append the following lines to the main Apache®
configuration file (APACHE_TOP/conf/httpd.conf) and reload the Apache® service.

<Location "/enginframe">
 DefaultType None
 ProxyPass ajp://127.0.0.1:8009/enginframe flushpackets=on
 ProxyPassReverse ajp://127.0.0.1:8009/enginframe
</Location>

If your context is not enginframe then you have to change the <Location> and those two lines
accordingly.

Configure Apache® mod_proxy_balancer

This configuration is required to balance the traffic over many EnginFrame instances.

Create a specific file, for instance ef-ent.conf, and add to the Apache® configuration directory
(usually /etc/httpd/conf.d).

An example of the ef-ent.conf file content is:

DBMS Setup

50 EnginFrame Administrator's Guide

Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e;
path=/enginframe" env=BALANCER_ROUTE_CHANGED

<Proxy balancer://enterprise>
 BalancerMember ajp://<ip of EnginFrame Server 1>:8009 route=1
 BalancerMember ajp://<ip of EnginFrame Server 2>:8009 route=2
 ProxySet lbmethod=bybusyness
 ProxySet stickysession=ROUTEID
</Proxy>

<Location "/enginframe">
 ProxyPass balancer://<enterprise hostname>/enginframe
 ProxyPassReverse balancer://<enterprise hostname>/enginframe
</Location>

The enterprise alias is an internal parameter. Instead, the enginframe context can be changed
if needed. The Header setup is needed in order to store internally the route id to pass it to
stickysession variable, useful for cookie automatic management.

DBMS Setup

An empty database instance named EnginFrameDB (case sensitive) must be created prior to
EnginFrame first startup. At the first startup, EnginFrame will create all the needed tables.

The following sections describe the steps to create the EnginFrameDB database instance on the
supported DBMS.

Note

Do not start EnginFrame server(s) before the following steps are completed.

EnginFrame Configuration

During installation of EnginFrame Enterprise you will be prompted to insert the JDBC URL to the
EnginFrame database instance together with the username and password with which to access. i.e.:

JDBC URL [default: jdbc:derby://localhost:1527/EnginFrameDB]
> jdbc:mysql://172.16.10.216:3306/EnginFrameDB
Username [default: dbadmin]
> enginframedb
Password
> efdbpassword

MySQL® (version 5.1.x and higher)

• Use the command

mysql -p

on the MySQL® server host to login as root;

DBMS Setup

EnginFrame Administrator's Guide 51

• Create a new database by executing the following SQL query:

CREATE DATABASE EnginFrameDB;

• Create a new user by executing the following SQL queries, using single quotes as listed below

CREATE USER '<username>'@'<host>' IDENTIFIED BY '<password>';

E.g.:

CREATE USER 'efdbadmin' IDENTIFIED BY 'efdbpassword';
CREATE USER 'efdbadmin'@'%' IDENTIFIED BY 'efdbpassword';

The first statement allows access to localhost, i.e., for maintenance actions; in the second one, '%'
is the wildcard used to allow all hosts. You can modify the latest statement to restrict the access
to the EnginFrame Servers only;

• Grant privileges to the new user on the previously created DB by executing the following SQL
query:

GRANT ALL PRIVILEGES ON EnginFrameDB.* TO <username>
 IDENTIFIED BY '<password>';

E.g.:

GRANT ALL PRIVILEGES ON EnginFrameDB.* TO 'efdbadmin'
 IDENTIFIED BY 'efdbpassword';
GRANT ALL PRIVILEGES ON EnginFrameDB.* TO 'efdbadmin'@'%'
 IDENTIFIED BY 'efdbpassword';

• Flush privileges in order to activate them on the created DB:

flush privileges;

• Test the connection to the EnginFrameDB database. From one of server on which will be installed
the EnginFrame server instance, using MySQL® client only, check the connection to the created
database:

mysql -h <mysql server hostname/ip address>[:<port>]
 -u <username>
 -p <password>

E.g.:

DBMS Setup

52 EnginFrame Administrator's Guide

mysql -h mysqlserver -u efdbadmin -p efpassword
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 87653
Server version: 5.1.73 Source distribution

Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql>

Oracle DB (10 and higher)

• Login to the DB as admin using a SQL client like, for instance, SQuirreL SQL Client, using the uri

jdbc:oracle:thin:@<hostname>:<port>:XE

E.g.:

jdbc:oracle:thin:@efentserverdb:1521:XE

• Create a new user by executing the following SQL query:

CREATE USER <username> IDENTIFIED BY <password>>

E.g.:

CREATE USER enginframedb IDENTIFIED BY efdbpassword

a new schema with name equals to the username will be automatically created by the db engine:
logging into the db with the new user, the user schema will be automatically used for that user;

• Grant privileges to the new user by executing the following SQL query:

GRANT ALL PRIVILEGES TO <username>

E.g.:

GRANT ALL PRIVILEGES TO enginframedb

If you need to restrict some privileges for the new user, please see the Oracle documentation, just
be sure that the user has read/write permissions on his schema (the one automatically created, see
above).

• Alter db user profile to avoid automatic expiration, issuing the following SQL query:

ALTER PROFILE DEFAULT LIMIT PASSWORD_LIFE_TIME UNLIMITED;

EnginFrame Service Configuration

EnginFrame Administrator's Guide 53

This sets the no password expiration for all the default user's profile.

SQL Server® (2012, 2008)

• Enable TCP/IP networking and remote connections:

• run SQL Server Configuration Manager;

• go to SQL Server Network Configuration > Protocols for SQLEXPRESS;

• make sure TCP/IP is enabled;

• right-click on TCP/IP and select Properties;

• verify that, under IP2, the IP Address is set to the computer's IP address on the local subnet;

• scroll down to IPAll;

• make sure that TCP Dynamic Ports is blank;

• make sure that TCP Port is set to 1433.

• Create a new database named EnginFrameDB using the SQL Server Management Studio with
default settings.

• Create a user with SQL Server® authentication using the SQL Server Management Studio, for
instance, username: enginframedb and password: efdbpassword

• Make sure the user has at least the db_owner role on the EnginFrameDB, otherwise it will not
be able to read/create tables. Check this in the Object Explore. Go to Security > Logins,
right click on the username and choose Properties > User Mapping from the left panel.

• EnginFrameDB database must be checked and with the right role membership checked (i.e.:
checked db_owner and public);

• (optional) Make EnginFrameDB the default database for the user, go to Security >
Logins, right click on the username and choose Properties > General from the left
panel.

• Allow SQL Server® to be accessed through "SQL Server and Windows Authentication mode" and
not only through "Windows authentication mode"

• Right-click on the DB server instance where EnginFrameDB has been created, e.g.
SQLEXPRESS;

• Select Properties, then Security, Server authentication and select "SQL Server and Windows
Authentication mode";

At this point EnginFrame should be able to access SQL Server® DB and to create tables.

EnginFrame Service Configuration

The installer can configure the EnginFrame service to start at boot time on the node where it is run.

EnginFrame Start

54 EnginFrame Administrator's Guide

Assuming the installation was performed on a shared file system, to configure the EnginFrame service
to start on all other dedicated nodes, log in on each node and run:

$EF_TOP/bin/enginframe host-setup --roles=server,agent --boot=y

This configuration will start both server and agent components at node startup.

For more information on the host-setup options, run:

$EF_TOP/bin/enginframe host-setup --help

EnginFrame Start

Once the EnginFrame service is installed, to manually start start it on every node, run:

service enginframe start

Check if every database EnginFrameDB instance (MySQL®, Oracle® or SQL Server®) has been
populated with EnginFrame tables.

EnginFrame Administrator's Guide 55

5
Running NICE EnginFrame

 This chapter describes how to start, stop, and check EnginFrame Portal's status. The administration
monitoring and self checking services are also described.

Start, Stop, and Check Status
 You control EnginFrame execution with $EF_TOP/bin/enginframe command line script.

 Execute the following to start EnginFrame:

$EF_TOP/bin/enginframe start

 Execute the following to stop EnginFrame:

$EF_TOP/bin/enginframe stop

Starting server/agent separately

If EnginFrame Server and EnginFrame Agent are on separate hosts, issue the
following command on the host running EnginFrame Server:

$EF_TOP/bin/enginframe <start|stop> server

Issue the following command on the host running EnginFrame Agent:

$EF_TOP/bin/enginframe <start|stop> agent

Starting EnginFrame Enterprise

In the EnginFrame Enterprise deployment scenario, as described in the section
called “Deployment”, you will have to run the EnginFrame start (stop)
command on each host of the EnginFrame Enterprise infrastructure.

Start, Stop, and Check Status

56 EnginFrame Administrator's Guide

$EF_TOP/bin/enginframe <start|stop>

 This control script also checks EnginFrame's status:

$EF_TOP/bin/enginframe status

An example output of the previous commands follows:

/opt/nice/enginframe/bin/enginframe start

Reading EnginFrame version from: /opt/nice/enginframe/current-version
Current version: 2017.0-r41442

EnginFrame Control Script
Loading configuration from:
 - "/opt/nice/enginframe/conf/enginframe.conf"
Using EnginFrame in "/opt/nice/enginframe/2017.0-r41442"
Tomcat started.

[OK] EnginFrame Server started

[OK] EnginFrame Agent started

Start, Stop, and Check Status

EnginFrame Administrator's Guide 57

/opt/nice/enginframe/bin/enginframe status
Reading EnginFrame version from: /opt/nice/enginframe/current-version
Current version: 2017.0-r41442

EnginFrame Control Script
Loading configuration from:
 - "/opt/nice/enginframe/conf/enginframe.conf"
Using EnginFrame in "/opt/nice/enginframe/2017.0-r41442"

---- Server PID Information ----
USER PID PPID %CPU %MEM STIME TIME COMMAND
efnobody 1674 1 69.9 17.4 19:34 00:01:47 /usr/lib/jvm/jre/bin/java
-Xms1024m -Xmx1024m -XX:HeapDumpPath=/[...]/dumps/server.pid1549.hprof
-Djava.protocol.handler.pkgs=com.enginframe.common.utils.xml.handlers
-XX:ErrorFile=/[...]/dumps/server.hs_err_pid1549.log
-DjvmRoute=efserver1 -DEF_LICENSE_PATH=/opt/nice/enginframe/license
-DDERBY_DATA=/opt/nice/enginframe/data/derby -DEF_ERRORS_DIR=/opt/nice/
enginframe/data/errors -Def.repository.dir=/opt/nice/enginframe/repository
-XX:+HeapDumpOnOutOfMemoryError -DEF_ROOT=/opt/nice/enginframe/2017.0-r41442/
enginframe -DEF_DYNAMIC_ROOT=/opt/nice/enginframe/2017.0-r41442/enginframe
-DEF_CONF_ROOT=/opt/nice/enginframe/conf -DEF_DATA_ROOT=/opt/nice/enginframe/
data -Def.tmp.dir=/opt/nice/enginframe/tmp/efserver1 -DEF_SPOOLER_DIR=/opt/
nice/enginframe/spoolers -DEF_SESSION_SPOOLER_DIR=/opt/nice/enginframe/
spoolers -DEF_LOGDIR=/opt/nice/enginframe/logs/efserver1
-Dfile.encoding=UTF -classpath :/opt/nice/enginframe/2017.0-r41442/tomcat/lib/
sdftree-handler.jar:/opt/nice/enginframe/2017.0-r41442/tomcat/bin/
bootstrap.jar:/opt/nice/enginframe/2017.0-r41442/tomcat/bin/tomcat-juli.jar
 [...] org.apache.catalina.startup.Bootstrap start

---- Server Port Information ----
INFO: Starting ProtocolHandler ["http-bio-8443"]

---- Agent PID Information ----
root 1677 1 6.5 5.2 19:34 00:00:10 /usr/lib/jvm/jre/bin/java
-Xms512m -Xmx512m -XX:HeapDumpPath=/[...]/dumps/agent.pid1549.hprof
-XX:ErrorFile=/[...]/dumps/agent.hs_err_pid1549.log
-DEF_ROOT=/opt/nice/enginframe/2017.0-r41442/enginframe -DEF_DYNAMIC_ROOT=
/opt/nice/enginframe/2017.0-r41442/enginframe -DEF_CONF_ROOT=/opt/nice/
enginframe/conf -DEF_DATA_ROOT=/opt/nice/enginframe/data -DEF_SPOOLER_DIR=
/opt/nice/enginframe/spoolers -DEF_SESSION_SPOOLER_DIR=/opt/nice/enginframe/
spoolers -DEF_LOGDIR=/opt/nice/enginframe/logs/efserver1 -Dfile.encoding=UTF-8
-Djava.security.policy==/[...]/2017.0-r41442/enginframe/conf/ef_java.policy
 [...] -jar /opt/nice/enginframe/2017.0-r41442/enginframe/agent/agent.jar

/opt/nice/enginframe/bin/enginframe stop

Reading EnginFrame version from: /opt/nice/enginframe/current-version
Current version: 2017.0-r41442

EnginFrame Control Script
Loading configuration from:
 - "/opt/nice/enginframe/conf/enginframe.conf"
Using EnginFrame in "/opt/nice/enginframe/2017.0-r41442"
Tomcat stopped.

[OK] EnginFrame Agent is down

Accessing the Portal

58 EnginFrame Administrator's Guide

Accessing the Portal
 EnginFrame Portal can be accessed by a browser once EnginFrame daemons are running. Type
EnginFrame Server's host name in your browser's address bar, followed by ':', and EnginFrame
Server's port number.

EnginFrame Server port number was selected during installation and can be viewed with the
command:

$EF_TOP/bin/enginframe status

described in previous section.

For instance if EnginFrame Server host is named myhost and EnginFrame Server port number is
7070, type in your browser's address bar:

http://myhost:7070

If myhost name is not resolved by your DNS, you can specify the corresponding IP address:

http://192.168.0.10:7070

DNS Issues

For any issue about DNS name and domain resolution and IP address numbers,
you should contact your network administrator.

EnginFrame Server is installed correctly if you see the welcome page. If your browser reports errors
such as Cannot find the requested page, Server not found, Problem loading page, check EnginFrame
is installed correctly by inspecting status as explained above.

Demo Sites
If you choose to install the EnginFrame Developer's Documentation during installation, the welcome
page, together with the production portals Applications, Views and Administration
Portal, will also display a link to the Technology Showcase that points to a set of demo
services to illustrate EnginFrame services capabilities.

Demo and Administration Access

By default, only EF_ADMIN user can access administration and tutorial demo
sites.

Administration Portal
EnginFrame includes an Administration Portal to monitor and manage some of its aspects directly
from a web browser.

The Administration portal is linked from the EnginFrame welcome page or can be reached directly at

http://host:port/context/admin

Monitor Services

EnginFrame Administrator's Guide 59

The Administration portal offers a set of services divided into the following categories:

• Monitor

• Develop

• Troubleshooting

Monitor Services

The Monitor folder contains useful services to check logged users, to monitor usage statistics
information and to get historical data and trigger information.

• Server Load service shows CPU usage, Java™ Virtual Machine memory usage, repository and
spoolers file system size and i-node usage.

• Usage Statistics service shows current and historical data that involves the number of logged users,
number of jobs with their status, number of interactive sessions and spoolers.

• License Status service enables the administrator to display current and historical usage of
EnginFrame licenses.

• Installed Components displays the installed EnginFrame plugin list with their version.

• Logged Users service shows the users logged into the portal and gives the possibility to force user
logout.

• Triggers service allows to check and manage scheduled triggers in EnginFrame.

• ACL Actors service shows EnginFrame ACL actors defined in authorization.xconf files
loaded by the system.

Develop Services

The Develop folder contains services to develop EnginFrame plugins.

• Create New Plugin service can be used to create a new EnginFrame plugin.

Troubleshooting Services

The Troubleshooting folder contains useful services for checking portal status and health.

• Run Self checks service performs several operations to exercise different functions and aspects of
EnginFrame. Every test outputs a result and, in most cases, a quick hint to correct the problem.

• View Error Files service enables the administrator to display error files generated by EnginFrame
when services produce a wrong output. In those cases EnginFrame provides an error number that
can be used here to open the associated error file.

• Collect Support Info service gathers a wide range of information about EnginFrame Portal and
its configuration. This service output is a compressed archive containing all gathered information.
Please attach this package when sending your request to EnginFrame support.

EnginFrame Statistics

60 EnginFrame Administrator's Guide

EnginFrame Statistics

To collect information about license usage, jobs usage and others useful statistics, EnginFrame uses
RRD4J as round-robin database.

RRD4J is a high performance data logging and graphing system for time series data, implementing
RRDTool's functionality in Java™. It follows much of the same logic and uses the same data sources,
archive types and definitions as RRDTool does.

EnginFrame creates a database for general usage information named
efstatistics.rrd and a database for each license file named
license_<component>_<expiration>_<maxToken>.rrd. A new database will be
created when license file changes.

In the admin.statistics.efconf configuration file you can configure some RRD4J specific
parameter to change archive time intervals or to configure historical charts. See RRD4J web site for
more information.

Database files are created by the update.statistics trigger at the very first run and updated at each
succeeding iteration every 60 seconds by default.

Applications Portal
EnginFrame includes the Applications Portal to create, manage and submit both Batch and Interactive
services.

The Applications portal is linked from the EnginFrame welcome page or can be reached directly at

http://<host>:<port>/<context>/applications

Applications portal offers two interfaces for two different users' roles: Admin's Portal and User's
Portal.

Admin's Portal

The Admin's Portal contains useful services to monitor interactive sessions, jobs, hosts and to manage
services, Applications users and portal appearance.

• Monitor » All Sessions service enables the administrator to manage interactive sessions for all
Applications users.

• Monitor » All Jobs service allows the administrator to monitor and manage DRM jobs for all
Applications users. In order to control the jobs of other users Applications administrator should
also have the proper rights in the underlying DRM.

• Monitor » Hosts service enables the administrator to monitor the status of the hosts of the
configured DRMs.

• Manage » Services service allows the administrator to fully manage, i.e. create, delete, edit, publish
etc., batch and interactive services.

• Manage » Users service allows the administrator to register, import and manage Applications
Users.

http://oss.oetiker.ch/rrdtool/
https://github.com/rrd4j/rrd4j

User's Portal

EnginFrame Administrator's Guide 61

• Manage » Appearance service enables the administrator to change the company logo and the
Portal's color theme.

User's Portal

The User's Portal exposes useful services to monitor user's data, sessions, jobs and hosts, together
with Batch and Interactive services published by the Applications administrators.

• Data » Spoolers service shows the user's EnginFrame Spoolers and provides rename and delete
operations.

• Data » Files service allows the user to browse and manage files in his home directory.

• Monitor » Sessions service enables the user to monitor and manage his interactive sessions.

• Monitor » Jobs service enables the user to monitor and manage his jobs.

• Monitor » Hosts service enables the user to monitor the status of the hosts of the configured DRMs.

Applications administrators can create and publish new services through the Admin's Portal. Service
publishing allows to expose different services to different groups of users.

Applications License

Applications portal requires a specific license. You have to contact
<helpdesk@nice-software.com> or your EnginFrame reseller to
purchase a license, perform a license change or obtain a demo license.

Views Portal
EnginFrame includes the Views Portal to create, manage and submit Interactive services.

The Views portal is linked from the EnginFrame welcome page or can be reached directly at

http://<host>:<port>/<context>/vdi

Views portal offers two interfaces for two different users' roles: Admin's Portal and User's Portal.

Admin's Portal

The Admin's Portal contains useful services to monitor interactive sessions, hosts and to manage
Interactive services, Views users and portal appearance.

• Monitor » All Sessions service enables the administrator to manage interactive sessions for all
Views users.

• Monitor » Hosts service enables the administrator to monitor the status of the hosts of the
configured DRMs.

• Manage » Interactive Services service allows the administrator to fully manage, i.e. create, delete,
edit, publish etc., Interactive services.

mailto:helpdesk@nice-software.com

User's Portal

62 EnginFrame Administrator's Guide

• Manage » Users service allows the administrator to register, import and manage Views users.

• Manage » Appearance service allows the administrator to change the company logo and the portal
color theme.

User's Portal

The User's Portal exposes services to monitor user's sessions and cluster hosts, together with the
Interactive services published by Views administrators.

• Monitor » Sessions service allows the user to monitor and manage his interactive sessions.

• Monitor » Hosts service enables the user to monitor the status of the hosts of the configured DRMs.

Views administrators can create and publish new services through the Admin's Portal. Service
publishing allows to expose different services to different groups of users.

PART II

Administration

EnginFrame Administrator's Guide 65

6
Common Administration Tasks

Most of the tasks an EnginFrame administrator has to perform involve editing configuration files.
This chapter provides an overview of the main EnginFrame configuration files and then focuses on
some common administration tasks, explaining in detail how to accomplish them.

This chapter describes the following tasks:

• Deploying a New Plugin

• Changing Java™ Version

• Changing Default Agent

• Managing Internet Media Types

• Customizing Error Page

• Limiting Service Output

• Configuring Agent Ports

• Customizing User Switching

• Customizing User Session Timeout

• Changing Charts Back-end

Other important administration tasks regarding EnginFrame Portal's specific sub-components (like
spooler management, logging, etc.) are described in the next chapters.

Main Configuration Files
In this section the main EnginFrame configuration files are described. Further details can be found
throughout this guide.

Starting from EnginFrame 2015, configuration files are isolated from the rest of EnginFrame
installation in $EF_TOP/conf. Configuration files in $EF_TOP/conf are preserved during
updates.

Main Configuration Files

66 EnginFrame Administrator's Guide

EnginFrame still uses internal configuration files located under $EF_TOP/<VERSION>
and organized according to the pre-EnginFrame 2015 directory-tree layout (i.e. $EF_TOP/
<VERSION>/enginframe/conf and $EF_TOP/<VERSION>/enginframe/plugins/
<plug-in>/conf, ...).

Some of these files define default values which can be overridden using files with the same name
under the $EF_TOP/conf tree. Note any modifications to files under $EF_TOP/<VERSION> are
discouraged and the files under this directory are subject to change in the next EnginFrame versions
without notice.

Main Configuration Files

EnginFrame Administrator's Guide 67

enginframe.conf

It is located in $EF_TOP/conf directory.

As already seen in the section called “Fine Tuning Your Installation”, this file configures the
JDK running EnginFrame Server and EnginFrame Agent and the execution options passed to
the JVM. It also configures other execution environment parameters like locale or user running
Tomcat® (referred to as EF_NOBODY).

server.conf

This is the server's main configuration file.

It is located in $EF_TOP/<VERSION>/enginframe/conf directory. Its contents are
merged with $EF_TOP/conf/enginframe/server.conf if present. In case the same
property is defined in both files the latter wins.

It also contains some parameters used by the local agent when executing services on EnginFrame
Server's host on EF_NOBODY's behalf.

agent.conf

This is the agent's main configuration file.

It is located in $EF_TOP/<VERSION>/enginframe/conf directory. Its contents are
merged with $EF_TOP/conf/enginframe/agent.conf if present. In case the same
property is defined in both files the latter wins.

mime-types.xml

It associates content types to files downloaded through the portal without requiring any change
to the JDK settings.

It is located in $EF_TOP/<VERSION>/enginframe/conf directory. Its contents are
merged, extended or overridden, with $EF_TOP/conf/enginframe/mime-types.xml
if present. In the case the same MIME type is defined in both files the latter overrides the mapping.

Refer to the section called “Managing Internet Media Types” for more details.

log.server.xconf

It configures EnginFrame Server's logging.

It is located in $EF_TOP/<VERSION>/enginframe/conf directory. Overridden by
$EF_TOP/conf/enginframe/log.server.xconf if present.

Refer to the section called “EnginFrame Server and Agent Logging” for more details.

log.agent.xconf

It configures EnginFrame Agent's logging.

It is located in $EF_TOP/<VERSION>/enginframe/conf directory. Overridden by
$EF_TOP/conf/enginframe/log.agent.xconf if present.

Refer to the section called “EnginFrame Server and Agent Logging” for more details.

authorization.xconf

It's a configuration file for the EnginFrame authorization system. It defines users' groups and
access control lists (ACLs).

Refer to the section called “Configuring Authorization”.

Deploying a New Plugin

68 EnginFrame Administrator's Guide

Deploying a New Plugin
Two types of plugins exist from a deployment point-of-view: the official ones distributed by NICE
and the custom ones produced in-house or distributed by third parties.

Important

Plug-ins designed for pre-2015 EnginFrame versions cannot be installed on
newer EnginFrame. Please contact NICE and check if updated plug-ins are
available.

NICE's Official Plugins

NICE's official plugins are distributed with an installer that sets up the plugin and deploys it inside
EnginFrame.

If NICE eftoken plugin (sold separately) were to be installed, it would be done by executing:

java -jar eftoken-X.Y.Z.jar

The installer asks EnginFrame's root directory, plugin specific configuration options, and then installs
the code.

If EnginFrame Server and EnginFrame Agent are installed on two different hosts, unless otherwise
specified in plugin's documentation, the plugin has to be installed on both hosts.

Unless stated otherwise in plugin's documentation, once installed, the plugin is immediately available
through EnginFrame Portal without requiring a restart.

Custom Plugins

If you have a custom plugin or are deploying a third party plugin that is not distributed with
an installer, a manual deployment is necessary. All EnginFrame plugins must be placed inside
$EF_TOP/<VERSION>/plugins and follow the internal structure described below.

A plugin directory structure example is:

Figure 6.1. EnginFrame Plugin Structure

Changing Java™ Version

EnginFrame Administrator's Guide 69

Some plugins may need additional setup operations to work properly. Read and follow the instructions
distributed with plugin's documentation.

Changing Java™ Version

In some cases, e.g. an important security fix is shipped by Java™ vendor, changing the Java™
Platform running EnginFrame Portal is necessary.

The Java™ Platform running EnginFrame Server and EnginFrame Agent is defined using
JAVA_HOME parameter inside $EF_TOP/conf/enginframe.conf. Changing this value is the
only step necessary to use a different Java™ version to run these components.

Using Java™ installed in the directory /opt/java is done as follows:

JAVA_HOME="/opt/java"

EnginFrame Server and EnginFrame Agent restart is necessary to make changes effective.

Refer to the section called “Java™ Platform” for further information on supported Java™ versions.

Changing Default Agent

A single EnginFrame Server can connect to many EnginFrame Agents to execute services.

The remote Default Agent is specified during installation. When both server and agent are installed on
the same host, this agent automatically becomes the default one. When the server is installed alone,
the installer asks default agent's hostname and TCP port.

The default agent is defined in server.conf with two properties:

• EF_AGENT_HOST

Specifies default Agent hostname or IP address. The default value is localhost.

• EF_AGENT_PORT

Specifies default TCP port where Agent listens for incoming connections (i.e. parameter
ef.agent.port in Agent configuration, see the section called “Configuring Agent Ports” for
more details). Default value is 9999.

It is located in $EF_TOP/<VERSION>/enginframe/conf directory. Its contents are merged
with $EF_TOP/conf/enginframe/server.conf if present. In case the same property is
defined in both files the latter wins.

Service Definition Files use both properties.

So if an EnginFrame Server wants to set its default agent as agent1.nice listening on port 7777
the parameters mentioned above become:

EF_AGENT_HOST=agent1.nice
EF_AGENT_PORT=7777

Managing Internet Media Types

70 EnginFrame Administrator's Guide

EF_AGENT_HOST can also be set to an IP address, e.g. 192.168.1.16.

Changes to these parameters do not require EnginFrame Server's restart.

Important

You cannot remove EF_AGENT_HOST and EF_AGENT_PORT from
server.conf. If those properties are empty/missing, EnginFrame uses the
default values.

Managing Internet Media Types
When a file is downloaded from EnginFrame Portal the browser tries to open it with the application
configured to manage its media type content. For example, if an image is downloaded the browser
displays it inline, while if a Word document is downloaded, it launches Office.

EnginFrame suggests to browsers the best method to handle files by sending the Internet media type
in the download response.

An Internet media type, originally called MIME type, is a two-part identifier for file formats on the
Internet. The identifiers were originally defined in RFC 2046 for use in e-mails sent through SMTP,
but their use has expanded to other protocols such as HTTP.

It is very useful to link uncommon file extensions to specific MIME types, so browsers can handle
them correctly. Not all browsers use MIME type information in the same way. Older Microsoft®
Internet Explorer® versions relies more on content type detection provided by Windows® operating
system than on MIME type specified by the server's response message, especially for some of the
most common file name extensions.

EnginFrame uses a built-in list of MIME types provided by the JDK. This list is defined in
JAVA_HOME/jre/lib/content-types.properties.

EnginFrame overrides and extends this list of MIME types with $EF_TOP/<VERSION>/
enginframe/conf/mime-types.xml in the static installation directory and with the optional
$EF_TOP/conf/enginframe/mime-types.xml in the EnginFrame custom configuration
directory tree. These files, owned by EnginFrame administrator, are used across the whole system
unless more specific settings are found.

Each plugin has the possibility to extend and overrides the EnginFrame MIME types settings,
by defining its own static $EF_TOP/<VERSION>/enginframe/plugins/plugin_name/
conf/mime-types.xml and the associated customizable version $EF_TOP/conf/
plugins/plugin_name/mime-types.xml in the EnginFrame configuration directory tree.
MIME types defined in the plugin mime-types.xml files are used when downloading files from
spoolers generated by services defined into plugin_name plugin.

When EnginFrame receives a download request from the browser, it tries to associate a MIME type
to the file. It first looks in the plugin specific mime-types.xml file, then in EnginFrame mime-
types.xml. In the case it cannot associate a MIME type from its own configuration files, it uses
the default definitions specified in JDK's content-types.properties.

More in details, when looking for a MIME type of a file EnginFrame checks resources in the following
order:

http://tools.ietf.org/html/rfc2046

Managing Internet Media Types

EnginFrame Administrator's Guide 71

1. Custom plug-in MIME types, $EF_TOP/conf/plugins/plugin_name/mime-
types.xml

2. Static plug-in MIME types, $EF_TOP/<VERSION>/enginframe/
plugins/plugin_name/conf/mime-types.xml

3. Custom EnginFrame system-wide MIME types, $EF_TOP/conf/
plugins/plugin_name/mime-types.xml

4. Static EnginFrame system-wide MIME types, $EF_TOP/<VERSION>/enginframe/conf/
mime-types.xml

5. Default JDK MIME types, JAVA_HOME/jre/lib/content-types.properties

If this chain of lookup for a specific MIME type fails, the default MIME type, if defined, is returned,
otherwise an empty MIME type is sent back in the HTTP response by EnginFrame.

EnginFrame Server dynamically reloads the mime-types.xml files when they are modified, so
no restart is necessary.

EnginFrame ships this $EF_TOP/<VERSION>/enginframe/conf/mime-types.xml:

Managing Internet Media Types

72 EnginFrame Administrator's Guide

<?xml version="1.0"?>
<ef:mime-types xmlns:ef="http://www.enginframe.com/2000/EnginFrame">

 <ef:default type="text/plain" />

 <ef:mime-type>
 <ef:type type="text/plain"/>
 <ef:desc desc="ASCII Text File"/>
 <ef:extensions>
 <ef:extension ext=".log"/>
 </ef:extensions>
 <ef:match-list>
 <ef:match expr="[A-Z0-9]*.ef" />
 <ef:match expr="README" casesensitive="false" />
 </ef:match-list>
 </ef:mime-type>

 <ef:mime-type>
 <ef:type type="application/x-javascript"/>
 <ef:desc desc="JavaScript File"/>
 <ef:match-list>
 <ef:match expr="^.*[Jj][Ss]" />
 </ef:match-list>
 </ef:mime-type>

 <ef:mime-type>
 <ef:type type="application/json"/>
 <ef:desc desc="JSON File"/>
 <ef:match-list>
 <ef:match expr="^.*\.[Jj][Ss][Oo][Nn]" />
 </ef:match-list>
 </ef:mime-type>

 <ef:mime-type>
 <ef:type type="text/css"/>
 <ef:desc desc="CSS File"/>
 <ef:match-list>
 <ef:match expr="^.*[Cc][Ss][Ss]" />
 </ef:match-list>
 </ef:mime-type>

 <ef:mime-type>
 <ef:type type="image/vnd.microsoft.icon"/>
 <ef:desc desc="ICO File"/>
 <ef:match-list>
 <ef:match expr="^.*[Ii][Cc][Oo]" />
 </ef:match-list>
 </ef:mime-type>
</ef:mime-types>

The <ef:extensions> section contains exact matches. Thus, in this example, EnginFrame
associates text/plain MIME type to any file ending with extension .log or .patch.

The <ef:match-list> section contains regular expressions for matching a file name. Thus, in
this example, EnginFrame associates text/plain MIME type to all files whose name contains
only alphanumeric characters and whose extension is .ef and to all files named README.

Since the casesensitive attribute is set to false in the first <ef:match> tag, a caseless
matching is performed. This means, for example, that both files named license.ef or

Customizing Error Page

EnginFrame Administrator's Guide 73

LICENSE.EF are matched. If casesensitive attribute is not explicitly set to false, a case
sensitive match is performed. So files named readme or ReadMe are not matched by the regular
expression defined in the second <ef:match> tag.

<ef:default> is a child of <ef:mime-types> tag. It specifies a default MIME type for those
cases where a MIME type cannot be guessed. The syntax is:

<ef:default type="expected_mime_type" forward-guess="[true|false]" />

Attribute forward-guess set to true allows to interrupt MIME type lookup at the current mime-
types.xml file without considering upstream MIME type settings. Its default value is false.

The default value is also overridable following the same lookup order for mime-types.xml files
as reported in the list above.

Important

There are two settings concerning security and MIME types
into server.conf configuration file that are important
to be described here: ef.download.mimetype.mapping.text and
ef.download.mimetype.mapping.octetstream.

ef.download.mimetype.mapping.text: it's a comma separated list
of MIME types that, for security reasons, are mapped to text/plain in the
HTTP response to clients when downloading a file. This further MIME type
mapping prevents browsers from interpreting and rendering the downloaded
files protecting against malicious code that could be executed on the client
browser (cross-site scripting attack).

ef.download.mimetype.mapping.octetstream: it's a comma
separated list of MIME types that, for security reasons, are mapped to
application/octet-stream in the HTTP response to clients when
downloading a file. This further MIME type mapping prevents browsers from
taking any action on the downloaded files protecting against malicious code
that could be executed on the client host.

Refer to EnginFrame Administrator's Reference for more details on these XML tags.

Customizing Error Page
Whenever EnginFrame encounters an error during service execution, it displays an error message
on the browser using a well known layout. All errors that end up on browser are displayed with the
same look and feel.

Error page layout customization is achieved by changing ef.error.layout
value inside server.conf. This value must be an absolute path to an XSL
file containing customized stylesheets. $EF_TOP/<VERSION>/enginframe/lib/xsl/
com.enginframe.error.xsl is the default value for ef.error.layout. This file can be
used as a starting point to create customized templates.

So, if $EF_TOP/<VERSION>/enginframe/plugins/mycompany/lib/xsl/
mycompany.error.xsl contains the customized XSL templates, ef.error.layout is set
as follows:

Limiting Service Output

74 EnginFrame Administrator's Guide

ef.error.layout=${EF_ROOT}/plugins/mycompany/lib/xsl/mycompany.error.xsl

Changes to ef.error.layout do not require a server restart.

Limiting Service Output
EnginFrame's usual client is a web browser. Limiting amount of data sent to browsers saves resources
on client-side. When a service execution produces a big amount of XML/HTML, the browser could
have trouble rendering the page.

To avoid overloading the clients (and server/agent that have to produce/process the data), the
maximum amount of data that services can produce is definable using ef.output.limit. If the
limit is exceeded, the service's output is truncated and an error message is displayed on the browser.

ef.output.limit is specified as number of bytes and the default value is 10485760, i.e. 10
MB.

Since services are usually executed by a remote agent, this property is set inside the agent's
agent.conf.

The following example shows how to set this property to limit service's output to 2 KB (2048 bytes)
of data:

ef.output.limit=2048

However, since local agent can also execute services, ef.output.limit is also defined inside
server.conf.

EnginFrame Agent and/or the EnginFrame Server restart is not required when changing this property.

Note

The service execution is not influenced in any way by the specified limit.

The service output is truncated on agent before sending it back to the server.

Configuring Agent Ports
EnginFrame Agent and EnginFrame Server communicate using Java™ RMI over SSL protocol.
Technically speaking, EnginFrame Agent is an RMI server that exposes a remote object whose
methods are invoked by EnginFrame Server.

For this reason, EnginFrame Agent needs to open two TCP ports on its host: one port is used by an
RMI Registry while the other one is used by an RMI server. These ports are chosen during installation
(by default they are respectively 9999 and 9998).

$EF_TOP/conf/enginframe/agent.conf contains the values specified during installation.
Edit this file to change these values:

• ef.agent.port

Specifies TCP port on which RMI Registry is listening.

Customizing User Switching

EnginFrame Administrator's Guide 75

If this property is empty, the default port 9999 is used.

The specified value must be a valid TCP port that is not used by other processes on the same host.

• ef.agent.bind.port

Specifies TCP port on which RMI server is listening.

If this property is empty or is 0, a random free port is chosen at EnginFrame Agent startup.

The specified value must be 0 or a valid TCP port that is not used by other processes on the same
host. Furthermore, the specified value must be different from ef.agent.port.

For example, using port 7777 for RMI Registry and port 7778 for RMI server, the two parameters
must be set in the following way:

ef.agent.port=7777
ef.agent.bind.port=7778

EnginFrame Agent must be restarted to make changes effective.

Firewall Issues

If there is a firewall between EnginFrame Server and EnginFrame Agent
then ef.agent.bind.port has to be set to a value different from zero.
The firewall has to be configured to allow EnginFrame Server to open
TCP connections towards EnginFrame Agent using the ports specified by
ef.agent.port and ef.agent.bind.port.

If ef.agent.port is changed, then all <ef:location>'s port attributes have to change
accordingly inside Service Definition Files.

Modify EF_AGENT_PORT inside $EF_TOP/conf/enginframe/server.conf if default
agent's ports changed. Refer to the section called “Changing Default Agent” for more details.

Customizing User Switching
Unless EnginFrame was installed by an unprivileged user, every time EnginFrame Agent runs a
service it impersonates the system user associated to portal user requesting service execution. This
ensures service execution is performed as a regular system user (root is not allowed to run services)
and the files created/modified have proper ownerships and permissions.

EnginFrame allows modifying how user switching is done to affect service execution environment
and ultimately service execution itself.

EnginFrame Agent user switching mechanism is based on su shipped with every Linux®.

$EF_TOP/conf/enginframe/agent.conf configures ef.switch.user.params
parameter used to specify options passed to su. Multiple parameters must be separated by a space
without using quotes or double quotes like in the following example:

ef.switch.user.params=-f -m

Customizing User Switching

76 EnginFrame Administrator's Guide

An empty ef.switch.user.params means no options are passed to su:

ef.switch.user.params=

A missing ef.switch.user.params is automatically set to - which results in the user's profile
being sourced when su is executed. By default, ef.switch.user.params property is not set.

Tip

If user profiles on EnginFrame Agent's host are complicated and sourcing
them affects service execution performance, it is suggested to set
ef.switch.user.params to avoid sourcing them when su is executed.
You can, for example, set ef.switch.user.params to the empty string.

EnginFrame Agent does not have to be restarted when changing this parameter.

Customizing User Session Timeout

EnginFrame Administrator's Guide 77

Customizing User Session Timeout
A session defines a user's working period within EnginFrame Portal. A session starts at user login
and ends either when user logs out or when EnginFrame Server invalidates it.

Session timeout specifies the number of minutes a user can remain idle before the portal terminates
the session automatically. If a user does not interact with EnginFrame within the configured timeout,
the session is automatically invalidated and user has to reauthenticate to access EnginFrame Portal.

The default session timeout, defined for all users, is set to 30 minutes.

Session timeout can be changed in EF_ROOT/WEBAPP/WEB-INF/web.xml by changing the
session-timeout value. This value is expressed in a whole number of minutes. If the timeout is
0 or less, the container ensures the default behaviour of sessions is never to time out.

Changing session timeout to two hours, can be achieved modifying session-timeout value in
the following way:

<session-config>
 <session-timeout>120</session-timeout>
</session-config>

Changes to session timeout require EnginFrame Server's restart.

Apache®-Tomcat® Connection
There are many reasons to integrate Tomcat® with Apache®. And there are reasons why it should not
be done too. Starting with newer Tomcat (EnginFrame ships version 7.0.85), performance reasons
are harder to justify. So here are the issues to discuss in integrating vs not:

• Encryption - The Apache HTTP Server module mod_ssl is an interface to the OpenSSL library,
which provides Strong Encryption using the Secure Sockets Layer and Transport Layer Security
protocols. Tomcat is able to provide a similar encryption using the JVM, which needs to be cross
platform, so it is somehow less efficient than Apache. Moreover, Apache has a longer experience
on this field.

• Clustering - By using Apache as a front end you can let Apache act as a front door to your content
to multiple Tomcat instances. If one of your Tomcats fails, Apache ignores it and your Sysadmin
can sleep through the night. This point could be ignored if you use a hardware loadbalancer and
the clustering capabilities of EnginFrame Enterprise Edition.

• Clustering/Security - You can also use Apache as a front door to different Tomcats for different
URL namespaces (/app1/, /app2/, /app3/, or virtual hosts). The Tomcats can then be each in a
protected area and from a security point of view, you only need to worry about the Apache server.
Essentially, Apache becomes a smart proxy server.

• Security - This topic can sway one way or another. Java™ has the security manager while Apache
has a larger mindshare and more tricks with respect to security. Details will not be given here, but
let Google™ be your friend. Depending on your scenario, one might be better than the other. But
also keep in mind, if you run Apache with Tomcat you have two systems to defend, not one.

• Add-ons - Adding on CGI, perl, PHP is very natural to Apache. It's slower and more of a kludge
for Tomcat. Apache also has hundreds of modules that can be plugged in at will. Tomcat can have
this ability, but the code has not been written yet.

Apache®-Tomcat® Connection

78 EnginFrame Administrator's Guide

• Decorators - With Apache in front of Tomcat, you can perform any number of decorators that
Tomcat does not support or does not have the immediate code support. For example, mod_headers,
mod_rewrite, and mod_alias could be written for Tomcat, but why reinvent the wheel when Apache
has done it so well?

• Speed - Apache is faster at serving static content than Tomcat. But unless you have a high traffic
site, this point is useless. But in some scenarios, Tomcat can be faster than Apache. So benchmark
your site.

• Socket handling/system stability - Apache has better socket handling with respect to error
conditions than Tomcat. The main reason is that Tomcat must perform all its socket handling via
the JVM which needs to be cross platform. The problem is that socket optimization is a platform
specific ordeal. Most of the time the Java™ code is fine, but when you are also bombarded with
dropped connections, invalid packets, invalid requests from invalid IPs, Apache does a better job
at dropping these error conditions than JVM based program. (YMMV)

[Source: Tomcat Wiki]

There are at least two ways to configure an Apache Web Server as a frontend to Tomcat according
to the protocol used:

• HTTP

• AJP [see Protocol Reference].

The connection between Apache and Tomcat using protocol AJP can follow two different
strategies:

• Apache Module mod_proxy_ajp (Apache version 2.2 or higher)

• Tomcat Connector JK

http://wiki.apache.org/tomcat/FAQ/Connectors#Q3
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Apache_JServ_Protocol
http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

Changing Charts Backend

EnginFrame Administrator's Guide 79

Changing Charts Backend
Charts can be embedded dinamically into EnginFrame web pages.

By default, the internal charts provider is used, but is possible to use any other service compatible
with Google™ Chart API.

The chart backend can be changed in two ways:

• Globally for all charts that EnginFrame produces.

• Locally for specific chart.

In the first case, edit $EF_TOP/conf/enginframe/server.conf specifying
ef.charts.base.url:

ef.charts.base.url=http://chart.apis.google.com/chart

In the second case, set base attribute inside chart root tag:

<ch:chart ... base="http://chart.apis.google.com/chart" ... >

Interactive Administration

Configuration Files

Most of the times the values defined during the Interactive Plugin installation provide all the
information necessary to have a working setup. However sometimes further configuration is needed
to tailor the session broker to specific system and network conditions or to change the values defined
during the installation.

All the Interactive Plugin configuration files are located in the conf subdirectory.

Note

All the parameters in the configuration files with extension different from
.efconf comply with the following format from Bourne shell:

PARAMETER_NAME="parameter value"

In particular,

• There are no spaces before and after the = (equals).

• You can use shell variable references with the usual syntax $variable.
Always enclose variable names with curly braces, for example: ${HOME}.

Configuration Files

80 EnginFrame Administrator's Guide

• Bourne shell escaping and quoting syntax apply. Be sure to enclose values
containing spaces within the most appropriate quotes.

Important

Configuration parameters are automatically loaded upon saving. No need to
restart EnginFrame or logout.

interactive.efconf

This file contains Interactive Plugin's main default configuration parameters, that can be usually
overridden by each portal service.

Default Parameters

INTERACTIVE_DEFAULT_OS

• value: required

• default: linux

By default, interactive session will be launched on the operating system stated by
INTERACTIVE_DEFAULT_OS parameter.

Available values:

• linux - schedule on Linux® operating systems

• windows - schedule on Windows® operating systems

This behaviour can be overridden by each service itself by using --os <system> option of
interactive.submit

Example:

INTERACTIVE_DEFAULT_OS=linux

INTERACTIVE_DEFAULT_JOBMANAGER

• value: optional

• default: lsf

Default job manager for submitting interactive session jobs. Each session will be scheduled as a
single job.

This behaviour can be overridden by each service itself by using --jobmanager <jobmanager>
option of interactive.submit

Configuration Files

EnginFrame Administrator's Guide 81

Note
Your EnginFrame installation requires the related grid middleware plugin to
be installed and configured. Interactive Plugin will use it to submit and manage
interactive session jobs.

Example:

INTERACTIVE_DEFAULT_JOBMANAGER=lsf

INTERACTIVE_DEFAULT_REMOTE

• value: optional

• default: vnc

Default visualization middleware to use.

Available values:

• dcv - use NICE DCV (up to 2016.0) visualization middleware (over RealVNC®)

• dcv2 - use NICE DCV (since 2017.0) visualization middleware

• vnc - use VNC® visualization middlewares (RealVNC®, TigerVNC, TurboVNC and VirtualGL)

• rgs - use HP® RGS visualization middleware

Example:

INTERACTIVE_DEFAULT_REMOTE=dcv

INTERACTIVE_DEFAULT_VNC_QUEUE

• value: optional

• default: (not set)

Sets the default resource manager queue to use. Interactive session jobs will be submitted on that
queue.

This behaviour can be overridden by each service itself by using --queue <queue name> option
of interactive.submit

Example:

INTERACTIVE_DEFAULT_VNC_QUEUE=int_windows

Limits

INTERACTIVE_DEFAULT_MAX_SESSIONS

• value: optional

Configuration Files

82 EnginFrame Administrator's Guide

• default: undefined (no limits)

The maximum number of interactive sessions per interactive class.

If you set this default limit to X, each user will be able to start up to X sessions of the same interactive
class.

For more informations about interactive classes and sessions limits, please refer to the section called
“Session limits”

Example:

INTERACTIVE_DEFAULT_MAX_SESSIONS=3

interactive.<remote>.resolutions.conf

Inside this file you can specify some presets of the Remote Visualization Technology desktop
geometry as a four-valued colon-separated string plus a label. The label must separated by the
previous fields by one or more spaces

widthxheight:fullscreen:allmonitors label

width and height are integer numbers and express the size in pixels, fullscreen and allmonitors are
boolean flags {true|false} (case insensitive) and label is a human readable string describing the preset.

You can use the keyword auto to let the system guess the current screen resolution. If the list of
presets includes a line containing the string custom (no other content on the same line), the user
will be able to specify a custom resolution.

Note
Flag allmonitors is meaningful only when fullscreen is true. If you set
allmonitors=true while fullscreen=false, then allmonitors parameter will be
automatically converted to false.

Default content of the file:

auto Fullscreen on single monitor (autodect resolution)
5120x1600:true:true Fullscreen on two 30' monitors (5120x1600)
3840x1200:true:true Fullscreen on two 24' monitors (3840x1200)
2560x1600:true:false Fullscreen on single 30' monitor (2560x1600)
1920x1200:true:false Fullscreen on single 24' monitor (1920x1200)
1024x768:false:false Window-mode on singla XGA monitor (1024x768)
custom

authorization.xconf

This file contains the ACL (Access Control List) definitions specific to Interactive Plugin. It defines
some ACLs that are used in the demo portal to allow or deny access to the different visualization
middlewares to different users.

For more details on EnginFrame ACL system, general EnginFrame authorization and its
configuration, please refer to EnginFrame Administrator's Guide, Security section, Authorization
System chapter.

Configuration Files

EnginFrame Administrator's Guide 83

nat.conf

If you set up NAT (Network Address Translation) so that the client machines connect to the cluster
nodes through a different IP:PORT pair, this file allows to map IP:PORT pairs for services running
on a node to the corresponding public IP:PORT pair.

Note
Some visualization middleware clients require that the actual port of the
service equals the NATted port

The syntax consists of a line made of two pairs: the real IP:PORT pair followed by the public IP:PORT
pair. It is possible to specify a group of ports using the fromPORT-toPORT syntax.

Example:

node01 mycompany.com
node01 10.100.0.101
node12:42976 mycompany.com:42976
node01:7900-7910 mycompany.com:5900-5910
node05:7900-7910 10.100.0.101:5900-5910

A session starting on host node01, port 7901 would be returned to the client as mycompany.com:5901

proxy.conf

If you give access to cluster nodes through a proxy, you can configure this file to assign for each
connection a specific proxy server to use.

Note
This configuration applies only to VNC® and DCV connections.

The default configuration is to have a direct connection from any client to any server, so no proxy
for all connections.

The syntax consists of a table, each line has the following columns: PRIORITY, CLIENT-FILTER,
SERVER-FILTER, PROXY-TYPE, PROXY-ADDRESS:

PRIORITY
a number to rank the proxy list, 0 is the highest priority

CLIENT-FILTER
the range of IP addresses in the format: NETWORK/PREFIX
Examples:

10.20.0.0/16
0.0.0.0/0 (matches any IP address)

SERVER-FILTER
a glob pattern matching the server hostname

Configuration Files

84 EnginFrame Administrator's Guide

Examples:

node* (matches any node starting with "node")
node0[1-9] (matches hosts from node01 to node09)

PROXY TYPE
the proxy type to use, can be:

HTTP
proxy must support HTTP Connect protocol

SOCKS
proxy must support SOCKS5 protocol

DIRECT
special value to specify no proxy

PROXY-ADDRESS
the proxy hostname and port in the format host:port (not used in case proxy type is DIRECT).
Examples:

squidproxy.domain:3128
danteproxy:80
10.20.1.1:3128

In case multiple proxies with the same priority match, one of them is selected using an internal
strategy.

In case no proxy for a priority matches, the proxies in the next priority are checked.

In case no proxy line matches, an error is returned to the client.

Example: no connection will receive a proxy configuration

99 0.0.0.0/0 * DIRECT

Example: only connections to node01 will pass through proxyserver:3128, all other connections will
be direct.

1 0.0.0.0/0 node01 SOCKS proxyserver:3128
99 0.0.0.0/0 * DIRECT

Example: connections from IP 10.20.3.20 to node01 will pass through proxyserver:80, other
connections to node01 will pass through proxyserver:3128, all other connections will get an error.

0 10.20.3.20/32 node01 HTTP proxyserver:80
1 0.0.0.0/0 node01 SOCKS proxyserver:3128

url.mapping.conf

The new URL mapping configuration allows EnginFrame administrators to configure the target
endpoints that will be used by clients to connect to the NICE DCV (since 2017.0) remote servers.

Configuration Files

EnginFrame Administrator's Guide 85

The configuration file to define the target DCV servers URLs endpoints is ${EF_CONF_ROOT}/
plugins/interactive/url.mapping.conf.

In this configuration file the administrator can write multiple mappings each one defining a matching
rule and a target endpoint. Each rule can match one or more DCV servers as provided upstream by the
system by using a set of predefined variables and glob expression. For each match the configuration
provides a mapped endpoint that is a triple that includes the host, port and web URL path that will
be used by clients to connect to the target DCV server.

Inside the ${EF_CONF_ROOT}/plugins/interactive/url.mapping.conf
configuration file it is possible to use the usual set of EnginFrame environment variables available
during a service execution (e.g. EF_*, session variables) together with the interactive session
metadata and a new set of noteworthy variables:

• ${server_host} - the remote DCV server host as provided by the system in the upstream
process;

• ${server_port} - the remote DCV server port as configured on the DCV server node;

• ${server_web_url_path} - the DCV server web URL path as configured on the DCV server
node;

• ${session_id} - the DCV session ID;

• ${nat_server_host} - the value of the DCV server host coming from
${EF_CONF_ROOT}/plugins/interactive/nat.conf;

• ${nat_server_port} - the value of the DCV server port coming from
${EF_CONF_ROOT}/plugins/interactive/nat.conf;

• ${proxy_host} - the proxy host coming from ${EF_CONF_ROOT}/plugins/
interactive/proxy.conf;

• ${proxy_port} - the proxy port coming from ${EF_CONF_ROOT}/plugins/
interactive/proxy.conf;

Every single value of the tuple, target host, target port and target web URL path, is evaluated
separately. Variables are expanded and command substitution executed.

Important

Parameters evaluation is performed on behalf of the user running the Apache
Tomcat® server (e.g. efnobody), on the host where EnginFrame runs.

Note

The only supported protocol for the mapped URL is HTTPS and cannot be
changed.

For further information and examples consult directly the ${EF_CONF_ROOT}/plugins/
interactive/url.mapping.conf configuration file.

Interactive Session Life-cycle
Extension Points

86 EnginFrame Administrator's Guide

xstartup files

The configuration directory also contains a collection of sample xstartup files named
*.xstartup that may be used in your service definitions to start a X session with the specified
Window Manager.

Common tasks for xstartup scripts are, e.g. launching dbus daemon, opening an xterm window or
setting specific Window Manager parameters.

An example xstartup script:

#!/bin/bash
[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
xsetroot -solid grey
vncconfig -iconic &
xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &

The xstartup files shipped with Interactive Plugin are:

• gnome.xstartup, xstartup script for GNOME window manager.

• icewm.xstartup, xstartup script for ICE window manager.

• kde.xstartup, xstartup script for KDE window manager.

• mate.xstartup, xstartup script for MATE window manager.

• metacity.xstartup, xstartup script for Metacity window manager.

• mwm.xstartup, xstartup script for Motif window manager.

• xfce.xstartup, xstartup script for Xfce window manager.

• xfwm4.xstartup, xstartup script for Xfwm4 window manager.

Default Xstartup are gnome.xstartup for desktop sessions and mwm.xstartup for standalone
interactive applications.

mime-types.xml

This file defines some mime-types useful for Interactive Plugin. Mime-types in this context are used
to associate client viewers like VNC® Viewer to files generated by Interactive Plugin with specific
extensions.

File extensions specified in this file are .dcv, .vnc, .efrgs, .rgreceiver and .ica.

For more details on EnginFrame mime-types configuration and customization, please refer to
EnginFrame Administrator's Guide, Administration section, Common Administration Tasks chapter.

Interactive Session Life-cycle Extension Points

Interactive Session Dynamic Hooks

EnginFrame, starting from version 2017.2, adds two new extension points (hooks) to the interactive
session life cycle.

Interactive Session Life-cycle
Extension Points

EnginFrame Administrator's Guide 87

The first customisable hook, basically a shell script, it's called when the session has been successfully
setup on the remote host and it's ready to pass to the “Running” state. This hook is meant to execute
some simple setup operations at session startup, e.g. to dynamically configure a gateway technology
as the AWS™ Application Load Balancer (ALB) or an Nginx instance, enabling the clients to access
the underlying dynamic infrastructure.

The hook has also the capability to add custom metadata to the session and to configure the target
host, port and web URL path tuple to be used by the clients to connect to the session.

In order to set the connection parameters to be used by the clients to connect to the interactive session,
the hook script has to export the following variables in the environment:

• INTERACTIVE_SESSION_TARGET_HOST

• INTERACTIVE_SESSION_TARGET_PORT

• INTERACTIVE_SESSION_TARGET_WEBURLPATH

These variables will be set as session metadata and used to forge the session URL and connection .dcv
file upon a client request through the EnginFrame portal. The configuration of these interactive
session settings will have the precedence over the static configuration files (e.g. nat.conf,
url.mapping.conf) in defining the connection parameter for the clients.

Inside the hook script, it is possible to use the usual EnginFrame environment variables together with
the session metadata variables. Noteworthy variables that can be useful to the hook logic are:

• ${INTERACTIVE_SESSION_REMOTE_SESSION_ID} - the ID for a DCV 2017 session;

• ${INTERACTIVE_SESSION_EXECUTION_HOST} - the execution host of the DCV session
as determined internally by the system;

• ${INTERACTIVE_SESSION_DCV2_WEBURLPATH} - the web URL path of the DCV server,
as configured in /etc/dcv/dcv.conf on the DCV server node;

• ${INTERACTIVE_DEFAULT_DCV2_WEB_PORT} - the web port of the DCV server, as
configured in ${EF_CONF_ROOT}/plugins/interactive/interactive.efconf;

In a specular way, the second customisable hook it's executed when the session goes in the “Closed”
or “Failed” state.

The locations of the starting and closing hooks are
configured in ${EF_CONF_ROOT}/plugins/interactive/interactive.efconf
through the variables INTERACTIVE_SESSION_STARTING_HOOK and
INTERACTIVE_SESSION_CLOSING_HOOK respectively.

Hooks execution is done by the user running the Apache Tomcat® server (e.g. efnobody), and their
standard output and standard error are logged into two log files in the interactive session spooler.
They are accessible via web from the session details view.

Important

In case of errors the starting hook will block the session startup avoiding the
session to go in the “Running” state. If the starting hook fails, it will keep the

Interactive Session Life-cycle
Extension Points

88 EnginFrame Administrator's Guide

session in the “Starting” status, and the session will be flagged with a warning
message.

The result of the closing hook instead doesn't prevent the session to go in the terminal state. If the
closing hook fails the session will anyway terminate and it will be flagged with a warning message.

Warning

The execution of the hooks can be triggered either by a user action (e.g.
submission or closing operation) or by the EnginFrame internal process that
updates the interactive sessions status. At the moment there is no mutual-
exclusion mechanism in place and hooks may run concurrently on the same
session. It's up to the hook scripts to be concurrency-safe.

Hooks also allow to set custom metadata to the interactive session. Any environment exported
variable with prefix SESSION_ will be added as metadata to the interactive session. All the session
metadata are available to the hook scripts.

Sample Starting and Closing Hooks to Configure an AWS™ ALB

Sample starting and closing hooks to dynamically configure the AWS™ Application Load Balancer
(ALB) on session creation and session closing, are provided in:

• ${EF_ROOT}/plugins/interactive/bin/samples/
sample.alb.session.starting.hook.sh

• ${EF_ROOT}/plugins/interactive/bin/samples/
sample.alb.session.closing.hook.sh

It is suggested to copy the scripts under ${EF_DATA_ROOT}/plugins/interactive/bin
before configuring or modifying them.

These scripts configure an AWS™ ALB to enable a connection to a host where a NICE DCV (since
2017.0) interactive session is running.

The starting hook script creates a new Target Group containing the instance where the Session is
running and adds a new Listener Rule for the HTTPS listener of the ALB.

The Listener Rule has the role to associate the input URL path to the Target Group. This path must
be the web URL path of the DCV server running on the execution node.

Important

Since it not possible to do URL path translations with an ALB, every DCV
server must have an unique web URL path configured. It is suggested to use
the hostname of the node as web URL path for the DCV server running on
that node.

The maximum number of Listener Rule(s) per ALB is 100, hence a single ALB can handle at most
100 interactive sessions running concurrently. To increase this limit, please consider to add more
ALBs in the infrastructure and to implement a rotation in the starting hook script.

Prerequisites for using the sample hook scripts provided:

Interactive Session Life-cycle
Extension Points

EnginFrame Administrator's Guide 89

• On EnginFrame node:

• AWS™ Command Line Interface (CLI) must be installed;

• Since this script is going to be executed by the user running the EnginFrame Server, i.e.
the Apache Tomcat® user, an AWS™ CLI profile must be configured for that user, having
the permissions to list instances and to manage load balancers. (see CLI Getting Started).
Alternatively, if EnginFrame is installed into an EC2 instance, a valid AWS™ role to perform
the above mentioned operations should be added to this instance;

• On AWS™ account:

• An AWS™ Application Load Balancer with an HTTPS listener with a Default Target Group
must be already configured and running;

On DCV server nodes:

• Each DCV server node must be configured with a unique web URL path (see /etc/dcv/
dcv.conf configuration file);

The following is an example of the steps to do in order to use the sample AWS™ ALB hook scripts
provided:

• copy the samples from ${EF_ROOT}/plugins/interactive/bin/samples to
${EF_DATA_ROOT}/plugins/interactive/bin and be sure that are executable;

• add the two configuration variables inside ${EF_CONF_ROOT}/plugins/interactive/
interactive.efconf:

• INTERACTIVE_SESSION_STARTING_HOOK=${EF_DATA_ROOT}/plugins/
interactive/bin/sample.alb.session.starting.hook.sh;

• INTERACTIVE_SESSION_CLOSING_HOOK=${EF_DATA_ROOT}/plugins/
interactive/bin/sample.alb.session.closing.hook.sh

• modify the hooks to change the value of the AWS™ ALB Public DNS name, through the variable
ALB_PUBLIC_DNS_NAME;

• configure the AWS™ role to let the EC2 instance where EnginFrame is running to manage the
ALB. From the AWS™ EC2 Console, select EC2 instance -> Instance Settings -> Attach/Replace
IAM Role. The following is just an example, more restrictive rules can be used instead:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances",
 "elasticloadbalancing:*"
],
 "Resource": "*"
 }
]

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Session limits

90 EnginFrame Administrator's Guide

Common errors from the hook execution:

• “An error occurred (AccessDenied) when calling the <xyz> operation: User: <abc> is not
authorized to perform <xyz>”. The user running the hook (i.e. the user running the Apache
Tomcat® server) is not authorized to perform the required operation. The AWS™ CLI profile
must be configured for that user, having the permissions to list instances and to manage load
balancers (see CLI Getting Started) or alternatively, if EnginFrame is installed into an EC2
instance, configure the correct AWS™ role for that instance.

• Getting “502 Bad Gateway” when connecting to the interactive session. It often means the Target
Group of the ALB listener rule is not yet initialized with the target instance. In this case the system
usually requires few more instants before establishing the connection with the instance.

Session limits

Number of sessions

The number of interactive sessions can be limited according to:

• the interactive session class. An interactive session class is a group of interactive services. Classes
defined and customizable by EnginFrame administrators. Interactive classes are defined by setting
the following metadata:

• INTERACTIVE_CLASS - an unique identifier for the class.

• INTERACTIVE_CLASS_LABEL - a label for the class (optional).

The maximum number of interactive sessions for each class is defined by setting
INTERACTIVE_MAX_SESSIONS parameter. The default value is defined into interactive.efconf
configuration file.

• the interactive service. Each interactive service can be assigned to a certain class and can define
the INTERACTIVE_MAX_SESSIONS parameter within its code.

• the user or user group. With the use of EnginFrame ACLs (Access control lists) combined
with the first two items. For detailed documentation about ACLs, please refer to EnginFrame
Administrator's Guide.

A full example follows:

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Log files

EnginFrame Administrator's Guide 91

<ef:service id="interactive.xterm">
 <ef:name>XTerm</ef:name>
 <ef:metadata attribute="INTERACTIVE_CLASS">xterm</ef:metadata>
 <ef:metadata attribute="INTERACTIVE_CLASS_LABEL">Xterm</ef:metadata>
 <ef:metadata attribute="INTERACTIVE_MAX_SESSIONS">3</ef:metadata>
 <ef:option id="project" label="Project" type="text">Interactive</ef:option>
 <ef:option id="jobmanager" label="Job Manager" type="list">
 <ef:embed id="grid.plugins"/>
 </ef:option>
 <ef:action id="submit" label="Start" result="text/xml">
 "${EF_ROOT}/plugins/interactive/bin/interactive.submit" \
 --name "XTerm" \
 --os "linux" \
 --jobmanager "${jobmanager}" \
 --project "${project}" \
 --remote "vnc" \
 --vnc-xstartup "${EF_ROOT}/plugins/interactive/conf/metacity.xstartup" \
 --close-on-exit \
 --command "xterm"
 </ef:action>
</ef:service>

In the example above, the maximum number of sessions of the "xterm" class will be limited to 3
for each user

Note
Interactive session name and interactive class are not dependent to each other.

Log files

Main interactive log file is located under EnginFrame log directory: ${EF_LOGDIR}/
interactive.log.

All others log files (session, debug, authentication) can be found inside each interactive session
spooler, and are available via the portal user interface, by reaching session details page.

Interactive Plugin Directory Structure

This section describes the directory structure. Please refer to the EnginFrame Administrator's Guide
for details about the formats and the purpose of the files.

Interactive Plugin is installed in ${EF_ROOT}/plugins/interactive.

These are the most important contents of the folder:

Interactive Plugin Directory
Structure

92 EnginFrame Administrator's Guide

interactive/
|-- WEBAPP
|-- bin
|-- conf
| |-- mappers
| | |-- interactive.duplicated.sessions.xconf
| | `-- interactive.list.sessions.xconf
| |-- dcv.gpu.balancer.conf
| |-- dcv2.gpu.balancer.conf
| |-- gnome.xstartup
| |-- icewm.xstartup
| |-- interactive.efconf
| |-- interactive.vnc.resolutions.conf
| |-- kde.xstartup
| |-- log.xconf
| |-- lxde.xstartup
| |-- mate.xstartup
| |-- metacity.xstartup
| |-- mime-types.xml
| |-- minimal.xstartup
| |-- mwm.xstartup
| |-- nat.conf
| |-- proxy.conf
| |-- template.dcv
| |-- template-dcv2.dcv
| |-- template.efrgs
| |-- template.rgreceiver
| |-- template.vnc
| |-- xfce.xstartup
| `-- xfwm4.xstartup
|-- etc
|-- lib
`-- tools

Interactive Plugin follows the conventional EnginFrame plug-in structure and in particular the
following directories contain Interactive Plugin system files:

• WEBAPP - top level service definition files.

• bin - scripts and executables.

• conf - configuration files.

• etc - Interactive Plugin metadata and EnginFrame descriptor files.

• lib - internal files used by Interactive Plugin: XML support services and XSL files.

• tools - Interactive Plugin integration and interface tools.

Each resource manager plugin supported by Interactive Plugin, includes an interactive subdirectory
which contains the the related interface code with Interactive Plugin:

Views Administration

EnginFrame Administrator's Guide 93

interactive/
|-- interactive.close
|-- interactive.is.session.ready
|-- interactive.log.data
|-- interactive.retrieve.screenshot
|-- interactive.submit
|-- linux.jobscript.functions
|-- services
| |-- interactive.lsf.linux.xml
| |-- interactive.lsf.shared.xml
| `-- interactive.lsf.windows.xml
`-- windows.jobscript.bat

in particular:

• interactive.submit - the session submission script.

• interactive.close - the operations to be performed to close the session.

• services - various service definitions.

Views Administration

Views portal is implemented by the VDI plugin that defines all the services that interact with the
backend to provide the high level, user functionalities.

VDI plugin provides a front-end portal that gives EnginFrame administrators an easy way to create,
publish and manage Interactive services. End-users instead are provided with a portal to easily access
the company Interactive services.

This section explains the configuration files and settings of the VDI plugin.

Configuration Files

Most of the times the values defined during the VDI plugin installation provide all the information
necessary to have a working setup. However the administrator may have the need to change the
folders where services files are stored or to change other settings of the system.

All the VDI plugin configuration files are located in the $EF_TOP/<VERSION>/enginframe/
plugins/vdi/conf subdirectory.

Important

As for the other EnginFrame plugins the correct way to change default
configuration is to copy the target configuration file under the $EF_TOP/
conf, into the $EF_TOP/conf/plugins/vdi directory, if it doesn't
already exist, and edit the copied file.

Configuration Files

94 EnginFrame Administrator's Guide

Note

Configuration parameters are automatically loaded upon saving. No need to
restart EnginFrame or logout.

vdi.conf

This file contains VDI main default configuration parameters.

Users Access Parameters

VDI_ALLOW_ALL_USERS

• value: required

• default: true

Enables Views portal access to all the users able to log into the system. If true, the users will be
added to the VDI default group at login time.

Available values:

• true - all user are allowed to access to the Views portal, i.e. VDI plugin services

• false - Views portal users should be explicitly added or imported by a Views administrator

Example:

VDI_ALLOW_ALL_USERS=true

service-manager.efconf

This file contains VDI plugin configuration parameters useful for service management.

General Parameters

VDI_SERVICES_ROOT

• value: required

• default: ${EF_DATA_ROOT}/plugins/vdi/services where EF_DATA_ROOT is $EF_TOP/data

Sets the root folder where services files are stored. Changing this value, you have to change also

• sdftree URL value inside href attribute of xi:include tags declared in vdi.xml,
vdi.admin.xml XML files.

• load-conf value of ef:action tags in the services XML files

Example:

Configuration Files

EnginFrame Administrator's Guide 95

VDI_SERVICES_ROOT=${EF_DATA_ROOT}/plugins/vdi/services

SM_TEMPLATES_ROOT

• value: required

• default: ${EF_ROOT}/plugins/vdi/templates

Sets the root folder where templates files for service creation are stored.

Example:

SM_TEMPLATES_ROOT=${EF_ROOT}/plugins/vdi/templates

Interactive Services Parameters

SM_CATALOG_INTERACTIVE

• value: required

• default: ${VDI_SERVICES_ROOT}/catalog

Sets the folder where unpublished interactive services files are stored.

Example:

SM_CATALOG_INTERACTIVE=${VDI_SERVICES_ROOT}/catalog

SM_PUBLISHED

• value: required

• default: ${VDI_SERVICES_ROOT}/published

Sets the folder where published interactive services files are stored.

Example:

SM_PUBLISHED=${VDI_SERVICES_ROOT}/published

interactive.editor.efconf

This file contains configuration parameters for the interactive service editor in the Views portal.

Note

In EnginFrame version 2015.0 this file was named vdi.editor.efconf
and had a slightly different set of configuration parameters.

Configuration Files

96 EnginFrame Administrator's Guide

During the installation of a newer version, EnginFrame makes a copy of
the old configuration file under $EF_TOP/conf/plugins/vdi directory,
naming it as vdi.editor.efconf.backup.

Interactive Editor Parameters

VDI_EDITOR_OS

• value: optional

• default: windows,linux

Sets supported operating systems for interactive sessions. Comma separated list without any blank
space.

Available values:

• windows - Windows® Desktop

• linux - Linux® Desktop

Example:

VDI_EDITOR_OS=windows,linux

VDI_EDITOR_CLUSTERS

• value: optional

• default: Cluster ids retrieved from system

Sets cluster ids to list on service editor. Comma separated list without any spaces.

Example:

VDI_EDITOR_CLUSTERS=clusterid1,clusterid2

VDI_EDITOR_CLUSTERS_ARCH_clusterId

• value: optional

• default: linux for all the clusters id, except for neutro, which is windows and except for lsf which
is windows and linux

Sets supported operating systems for interactive sessions scheduled in a specific cluster.
Comma separated list without any spaces. clusterId is one of the cluster id defined in the
VDI_EDITOR_CLUSTERS list.

Available values:

• windows - Windows® Desktop

Configuration Files

EnginFrame Administrator's Guide 97

• linux - Linux® Desktop

Example:

VDI_EDITOR_CLUSTERS_ARCH_openlavaCluster=linux
VDI_EDITOR_CLUSTERS_ARCH_myCluster=windows,linux

VDI_EDITOR_REMOTES

• value: optional

• default: vnc,dcv,dcv2,virtualgl,rgs

Sets the list of supported remote visualization technologies to display in the service editor. Comma
separated list without any spaces.

Available values:

• vnc - Virtual Network Computing®

• dcv - NICE Desktop Cloud Visualization (up to 2016.0)

• dcv2 - NICE Desktop Cloud Visualization (since 2017.0)

• virtualgl - VirtualGL

• rgs - HP®® Remote Graphics Software

Example:

VDI_EDITOR_REMOTES=vnc,dcv,dcv2,virtualgl,rgs

VDI_EDITOR_REMOTES_ARCH_remoteId

• value: optional

• default: linux, windows for vnc, dcv and dcv2, linux and windows for rgs, linux for
virtualgl

Sets supported session types for a specific remote id. Comma separated list without any spaces.
remoteId is one of the remote id defined in the VDI_EDITOR_REMOTES list.

Available values:

• windows - Windows® Desktop

• linux - Linux® Desktop

• linux-app - Linux® Desktop application

Example:

VDI_EDITOR_REMOTES_ARCH_vnc=linux
VDI_EDITOR_REMOTES_ARCH_rgs=windows

Log files

98 EnginFrame Administrator's Guide

VDI_EDITOR_DESKTOP_MANAGERS

• value: optional

• default: none

Sets the list of supported desktop manager ids to display on the service editor. Comma separated list
without any spaces.

For each desktop manager, the name to display could also be specified in the configuration parameter
VDI_EDITOR_DESKTOP_MANAGER_NAME_desktopManagerId. If omitted it will be equal
to the id.

For each desktop manager, the path to the xstartup file must be specified in the configuration
parameter VDI_EDITOR_DESKTOP_MANAGER_XSTARTUP_desktopManagerId.
Interactive plugin already provides a set of preconfigured xstartup files for supported desktop
managers under ${EF_ROOT}/plugins/interactive/conf/ directory.

Example:

VDI_EDITOR_DESKTOP_MANAGERS=gnome,kde
VDI_EDITOR_DESKTOP_MANAGER_NAME_gnome=GNOME
VDI_EDITOR_DESKTOP_MANAGER_XSTARTUP_gnome=${EF_ROOT}/path_to_gnome_xstartup
VDI_EDITOR_DESKTOP_MANAGER_XSTARTUP_kde=/path_to_kde_xstartup

Log files

Main VDI log file is located under EnginFrame log directory, ${EF_LOGDIR}/vdi.log, where
EF_LOGDIR is $EF_TOP/logs/<hostname>.

VDI Plugin Directory Structure

This section describes the directory structure.

VDI plugin is installed in ${EF_ROOT}/plugins/vdi.

These are the most important contents of the folder:

vdi/
|-- WEBAPP
|-- bin
|-- conf
| |-- authorization.xconf
| |-- log.xconf
| |-- service-manager.efconf
| |-- interactive.editor.efconf
| `-- vdi.conf
|-- etc
|-- lib
`-- templates

VDI follows the conventional EnginFrame plug-in structure and in particular the following directories
contain VDI system files:

• WEBAPP - top level service definition files and web resources.

Applications Administration

EnginFrame Administrator's Guide 99

• bin - scripts and executables.

• conf - configuration files.

• etc - VDI plugin metadata and EnginFrame descriptor files.

• lib - internal files used by VDI plugin: XML support services and XSL files.

• templates - Interactive services templates.

Interactive services are installed in $EF_TOP/data/plugins/vdi/services.

These are the important contents of the folder:

services/
|-- catalog
|-- published
`-- extra

The following directories contain VDI plugin services files:

• catalog - root folder for unpublished services

• published - root folder for published services

• extra - root folder for custom extra services to be included in the Views portal.

Applications Administration
Applications plugin provides a front-end portal that gives EnginFrame administrators an easy way
to create, publish and manage batch and interactive services. End-users instead are provided with a
portal to easily access the company HPC services.

This section explains the configuration files and settings of the Applications plugin.

Important

The service examples provided by the Applications portal make use of a
JOB_WORKING_DIR and assume it is mounted by both EnginFrame hosts
and execution hosts.

By default the JOB_WORKING_DIR is set to the EF_SPOOLER directory
of the submitted service, so in order to use the examples the root spoolers
directory should be shared with the execution hosts.

This is not a requirement of EnginFrame Applications portal but a
simplification used by the examples.

Configuration Files

Most of the times the values of the settings collected during the Applications plugin installation
provide all the information necessary to have a working setup.

Configuration Files

100 EnginFrame Administrator's Guide

However the administrator may have the need to change the folders where services files are stored
or to change other settings of the system.

All the Applications Plugin configuration files are located in the $EF_TOP/<VERSION>/
enginframe/plugins/applications/conf subdirectory.

Important

As for the other EnginFrame plugins the correct way to change default
configuration is to copy the target configuration file under the $EF_TOP/
conf, into the $EF_TOP/conf/plugins/applications directory, if
it doesn't already exist, and edit the copied file.

Note

Configuration parameters are automatically loaded upon saving. No need to
restart EnginFrame or logout.

applications.conf

This file contains Applications's main default configuration parameters.

Users Access Parameters

APPLICATIONS_ALLOW_ALL_USERS

• value: required

• default: true

Enables Applications portal access to all the users able to log into the system. If true, the users will
be added to the Applications default group at login time.

Available values:

• true - all user are allowed to access to the Applications portal

• false - Applications portal users should be explicitly added or imported by an Applications
administrator

Example:

APPLICATIONS_ALLOW_ALL_USERS=true

service-manager.efconf

This file contains Applications plugin configuration parameters useful for service management.

Configuration Files

EnginFrame Administrator's Guide 101

General Parameters

APPLICATIONS_SERVICES_ROOT

• value: required

• default: ${EF_DATA_ROOT}/plugins/applications/services where EF_DATA_ROOT is
$EF_TOP/data

Sets the root folder where services files are stored. A change to this value requires changes also to

• sdftree URL value inside href attribute of xi:include tags declared in applications.xml,
applications.admin.xml XML files

• load-conf value of ef:action tags in the services XML files

Example:

APPLICATIONS_SERVICES_ROOT=${EF_DATA_ROOT}/plugins/applications/services

SM_TEMPLATES_ROOT

• value: required

• default: ${EF_ROOT}/plugins/applications/templates

Sets the root folder where service templates files are stored.

Example:

SM_TEMPLATES_ROOT=${EF_ROOT}/plugins/applications/templates

SM_PUBLISHED

• value: required

• default: ${APPLICATIONS_SERVICES_ROOT}/published

Sets the root folder where Applications stores files for published services.

Example:

SM_PUBLISHED=${APPLICATIONS_SERVICES_ROOT}/published

Batch Services Parameters

SM_CATALOG_BATCH

• value: required

• default: ${APPLICATIONS_SERVICES_ROOT}/catalog/batch

Sets the folder where unpublished batch services files are stored.

Log files

102 EnginFrame Administrator's Guide

Example:

SM_CATALOG_BATCH=${APPLICATIONS_SERVICES_ROOT}/catalog/batch

Interactive Services Parameters

SM_CATALOG_INTERACTIVE

• value: required

• default: ${APPLICATIONS_SERVICES_ROOT}/catalog/interactive

Sets the folder where unpublished interactive services files are stored.

Example:

SM_CATALOG_INTERACTIVE=${APPLICATIONS_SERVICES_ROOT}/catalog/interactive

interactive.editor.efconf

This file contains configuration parameters for the interactive service editor in the Applications portal.

The file syntax and parameters is the same of the homonymous file of the VDI plugin Please refer to
the section called “interactive.editor.efconf” of VDI plugin for the description of this
configuration file.

Log files

Main Applications log file is located under EnginFrame log directory: ${EF_LOGDIR}/
applications.log, where EF_LOGDIR is $EF_TOP/logs/<hostname>.

Applications Directory Structure

This section describes the directory structure.

Applications is installed in ${EF_ROOT}/plugins/applications.

These are the most important contents of the folder:

applications/
|-- WEBAPP
|-- bin
|-- conf
| |-- authorization.xconf
| |-- log.xconf
| |-- service-manager.efconf
| |-- interactive.editor.efconf
| `-- applications.conf
|-- etc
|-- lib
`-- templates

Applications Directory Structure

EnginFrame Administrator's Guide 103

Applications follows the conventional EnginFrame plug-in structure and in particular the following
directories contain Applications system files:

• WEBAPP - top level service definition files and web resources.

• bin - scripts and executables.

• conf - configuration files.

• etc - Applications plugin metadata and EnginFrame descriptor files.

• lib - internal files used by Applications plugin: XML support services and XSL files.

• templates - Services templates.

By default both batch and interactive services are installed in $EF_TOP/data/plugins/
applications/services.

These are the most important contents of the folder:

services/
|-- catalog
| |-- batch
| `-- interactive
|-- published
`-- extra

The following directories contain Applications services files:

• catalog - root folder for batch and interactive unpublished services

• published - root folder for published services

• extra - root folder for custom extra services to be included in the Applications portal.

EnginFrame Administrator's Guide 105

7
Managing Spoolers

This chapter illustrates the basic concepts concerning EnginFrame spoolers and their management.

A spooler is a dedicated data container created by EnginFrame to host files provided by users (e.g.
input files uploaded using a Web browser) or generated by the services (e.g. output or temporary
files).

Every service execution (unless explicitly configured) triggers EnginFrame to create a new spooler
with appropriate user permissions allowing services to read from and write to spooler's directory.

EF_SPOOLER_DIR is organized per-user. Under EF_SPOOLER_DIR, EnginFrame creates a
directory for each user the first time the system is accessed. These directories are named with the
user's names. Under each <username> directory EnginFrame creates its spoolers, one for each
service execution.

The picture below illustrates EnginFrame's spooler directory structure.

Figure 7.1. Spoolers Directory Structure

Jane, Bob, Lucy are per-user directories and tmp1.ef, tmp2.ef, tmp3.ef, tmp4.ef,
tmp5.ef are spooler directory names EnginFrame creates dynamically.

Spoolers Requirements

106 EnginFrame Administrator's Guide

Spoolers Requirements
Spoolers used by agents running on hosts different from the server's one must reside on a shared
file system that must also be mounted from the EnginFrame Server's host. This shared area has to be
readable/writable by both components. EnginFrame provides a mapping mechanism enabling these
file-systems to be mounted with different paths on server and agent hosts.

Agent Mount Point

Please note that if you are using multiple agents the same mount point path
must be used for all of them.

EF_SPOOLER_DIR directory should be owned by the user running EnginFrame Server (e.g.
efnobody). efnobody must have read/write permissions since EnginFrame Server initially
creates spoolers for users. All other users must be able to traverse, i.e. read and execute permissions,
spooler root directory. Summarizing, spooler root directory should have the following ownerships
and permissions:

rwx r-x r-x efnobody:efnogroup

where efnogroup is efnobody's primary group.

The spoolers area must be placed on a file-system where agent's owner must have complete read/
write privileges. Depending on who runs agent daemon, this can be achieved by:

• Avoiding root squashing on NFS server when agent owner is root.

• Using same user running server when agent owner is a normal user.

EnginFrame Professional

Please note that distinct EnginFrame deployments should not share the same
Spooler area.

Spooler Security Permissions

EnginFrame Server starts with user file-creation mask, i.e. umask, set to 022 meaning that:

• Files are created with 644 rw-r--r-- permissions.

• Directories are created with 755 rwxr-xr-x permissions.

This assures EnginFrame Server user can read/write files from/into spoolers. This might lead to
a weak security environment since everybody could read files from spoolers owned by other user
accounts. For this reason EnginFrame Agent changes spooler permission to 750 rwxr-x--- just
before service execution. Final spooler permissions are thus read/write/execute for spooler's owner
and read/execute for EnginFrame Server's onwer. This occurs because user efnobody with group
efnogroup creates the spooler. EnginFrame Agent changes spooler's owner executing chown
<username> <spooler> and spooler ownership becomes <username>:efnogroup. This

Spooler Security Permissions

EnginFrame Administrator's Guide 107

allows spooler's owner to perform whatever action is needed inside spooler and that just efnogroup
members are allowed to read data inside spoolers. A security best practice is to have only efnobody
as efnogroup group's member.

Configuring EnginFrame Spoolers

108 EnginFrame Administrator's Guide

Configuring EnginFrame Spoolers
This section describes how to customize basic spoolers settings concerning directory paths and file
download aspects.

Configuring Spoolers Default Root Directory

EF_SPOOLER_DIR directory is chosen during installation. All spoolers are created by EnginFrame
under this directory. The default value is $EF_TOP/spoolers.

Spoolers root directory can be changed by editing EF_SPOOLERDIR parameter inside $EF_TOP/
conf/enginframe.conf. Please note that the startup parameter name EF_SPOOLERDIR is
slightly different from the property EF_SPOOLER_DIR that is set and used inside EnginFrame.

EF_SPOOLERDIR=/mnt/scratch/spoolers

Example 7.1. Change Spoolers Default Root Directory

After this change all spoolers are created under /mnt/scratch/spoolers directory.

Note

Changes to this parameter require an EnginFrame Server restart.

Note

Spooler location is defined at creation time, so changing EF_SPOOLERDIR
does not affect existing spooler's location. EnginFrame Agent retrieves old
spoolers from the old location and new spoolers from the new location.

Refer to the section called “Spoolers Requirements” when setting up a new spooler root directory.

Download Files From Spoolers

File are downloaded from spoolers on user's behalf involving both server and agent. EnginFrame
Server receives a download request forwarding it to the agent that actually accesses the file. The agent
posts the file back to server via HTTP(S).

This process implies EnginFrame Agent is able to connect back to server via HTTP(S) for sending
data. So network and firewall configurations should be carefully considered.

Note

If EnginFrame Server is configured to accept requests through HTTP over SSL
- HTTPS - protocol, then refer to Chapter 13, Configuring HTTPS to properly
configure server and agent.

It could be important to set a mime-type for downloaded files to let browsers correctly identify
the file's type. You can customize and configure the mime-type EnginFrame should use when

Download Files From Spoolers

EnginFrame Administrator's Guide 109

downloading files. the section called “Managing Internet Media Types” explains you how to setup
mime-type configurations.

Configure Download URL on Agent

The download process highlights how an agent has to connect back to the server for sending
downloaded data. Usually the server HTTP endpoint, i.e. host and port, to which agent should connect
is automatically detected from server's request.

There might be network configurations or architectural scenarios, e.g. web access is configured with
an HTTP server in front of EnginFrame Server, for which agent should use a different host and port
to connect to server. In this case you have to explicitly configure the complete URL to which agent
has to connect to EnginFrame Server.

The ef.download.server.url parameter inside $EF_TOP/conf/enginframe/
agent.conf (or $EF_TOP/<VERSION>/enginframe/conf/agent.conf) sets the URL
agent uses to connect to server. It is defined as:

ef.download.server.url=http[s]://<host>:<port>/<web-context>/download

where:

• host and port identifies EnginFrame Server network endpoint.

• web-context is EnginFrame's root context chosen during installation; it defaults to
enginframe.

Example:

ef.download.server.url=http://localhost:8080/enginframe/download

Configure Streaming Download Timeout

Streaming downloads have a timeout. If the file being streamed does not change during this interval,
EnginFrame interrupts its stream to client. Its default value is 300 seconds.

This value is specified in $EF_TOP/conf/enginframe/server.conf (or $EF_TOP/
<VERSION>/enginframe/conf/server.conf). You change this value by editing
ef.download.stream.inactivity.timeout property inside $EF_TOP/conf/
enginframe/server.conf. The value is expressed in seconds.

Example:

ef.download.stream.inactivity.timeout=600

to set a 10 minutes timeout.

Configure Streaming Download Sleep Time

EnginFrame's file streaming download feature works using a pull model. The server periodically
queries agent for available data.

The interval between two subsequent checks can be configured. Its default value is 5 seconds.
Consider that a lower interval might improve user experience while increasing system load.

Spooler Life Cycle

110 EnginFrame Administrator's Guide

This value is specified in $EF_TOP/conf/enginframe/server.conf (or $EF_TOP/
<VERSION>/enginframe/conf/server.conf). You change this value by editing
ef.download.stream.sleep.time parameter inside $EF_TOP/conf/enginframe/
server.conf. The value is expressed in seconds.

Example:

ef.download.stream.sleep.time=20

to set a 20 second sleep between two subsequent checks.

Spooler Life Cycle
This section outlines EnginFrame's spooler lifecycle. Besides outlining spooler's lifecycle, each sub-
section describes common customizations you can apply to EnginFrame Portal.

Overview

Spoolers are created for each service submission. More precisely spoolers are created for all those
services whose spooler definition has a TTL different from -1.

Spoolers are initially created by EnginFrame Server that also associates its defined time-to-live.
Together with spooler directory the server also creates an entry in EnginFrame's spooler database
called repository. The repository is file-system based and each entry is a file that contains all
information necessary to recreate a spooler, for example:

• The owner

• The physical location path on both server and agent

• The display name

• And other properties

The server also has the responsibility to save user's files into a spooler before contacting agent for
service execution. After the spooler setup tasks have been accomplished the server contacts agent for
service execution. The Agent first changes spooler's and its contents ownership and then uses this
spooler as execution working directory.

EnginFrame removes a spooler when its life-time expires, deleting spooler's directory with its content
and its repository entry. An EnginFrame thread called reaper periodically checks if there are expired
spoolers ready to be removed.

Change Repository Location

The default EnginFrame repository path is $EF_TOP/repository. EnginFrame gives you the
flexibility to change the location where repository entries should be stored.

For example you may want to save repository entries on a high speed/reliability file-system or on an
area where to keep "dynamic" file-system paths, i.e. directory whose contents change often, in order
to conform to your company's policies.

The repository location is configured by EF_REPOSITORYDIR parameter inside

Configure Reaper Sleep Time

EnginFrame Administrator's Guide 111

$EF_TOP/conf/enginframe.conf. It specifies an absolute path in the file-system. You can
use other variables defined in enginframe.conf for path definition.

Note

Changes to EF_REPOSITORYDIR require EnginFrame Server restart.

Some configuration examples

EF_REPOSITORYDIR=$EF_TOP/repository

defines repository location using $EF_TOP variable.

EF_REPOSITORYDIR=/mnt/nas/ef-repository

sets an absolute path for repository directory.

Configure Reaper Sleep Time

As explained in the section called “Overview” the EnginFrame reaper is a thread that periodically
wakes-up to check if there are expired spoolers in the system needing cleanup.

You can configure reaper's thread sleep interval determining how frequently this check should be
done.

This value is specified in $EF_TOP/conf/enginframe/server.conf (or $EF_TOP/
<VERSION>/enginframe/conf/server.conf). You change this value by editing
ef.reaper.sleep.time property inside $EF_TOP/conf/enginframe/server.conf.
The value is expressed in minutes. The default value is 30 minutes.

Example:

ef.reaper.sleep.time=60

to set one hour sleep between each thread's reap.

Spoolers Removal: Dead Spoolers

If for any reason spooler cleanup fails, spooler's directory is renamed prepending DEAD_ prefix to
its original name.

For example if EnginFrame is unable to remove spooler tmp32062.ef, it is renamed to
DEAD_tmp32062.ef. Dead spoolers can be safely removed from your system.

If you have setup deadspooler logging target (refer to the section called “Fine Tune
Logging”) once a dead spooler has been created, the event is logged into $EF_TOP/logs/
DEAD_spoolers.{agent|server}.log depending on which side, server or agent, the error
occurred.

EnginFrame Administrator's Guide 113

8
Managing Sessions Directory

This chapter illustrates the basic concepts concerning EnginFrame interactive session data and their
management.

An interactive session data is a dedicated data container created by EnginFrame to host files required
for the interactive session lifecycle, such as the thumbnail of the screenshot.

INTERACTIVE_SHARED_ROOT is organized in the same way as the EnginFrame spoolers, see
Chapter 7, Managing Spoolers [105]. Under INTERACTIVE_SHARED_ROOT, EnginFrame creates
a directory for each user the first time an interactive session is created. These directories are named
with the user's names. Under each <username> directory EnginFrame creates its session data
directory, one for each interactive session.

Sessions Requirements

114 EnginFrame Administrator's Guide

Sessions Requirements
Sessions must reside on a shared file system that must be mounted from the EnginFrame Server's
host, EnginFrame Agent's host and visualization nodes. This area may not require to be shared when
submitting sessions to some Distributed Resource Managers, see the section called “Shared File
System Requirements” for more info.

The INTERACTIVE_SHARED_ROOT directory must be owned by the user running EnginFrame
Server (e.g. efnobody) and by efnobody's primary group. It must have permissions 3777.
Summarizing it must have the following permissions:

d rwx rws rwt efnobody:efnogroup

where efnogroup is efnobody's primary group.

The EnginFrame installer takes care of creating this directory with the proper permissions.
The default location is $EF_TOP/sessions. This directory can be configured changing
the INTERACTIVE_SHARED_ROOT value in $EF_TOP/conf/plugins/interactive/
interactive.efconf.

This shared area has to be readable/writable by EnginFrame nodes and visualization nodes.
EnginFrame provides a mapping mechanism enabling these file-systems to be mounted with different
paths on EnginFrame and visualization hosts. This configuration is specific to the Distributed
Resource Manager used for the session and can be configured in the specific plugin configuration file:

• On OpenLava, use LSF_INTERACTIVE_SHARED_ROOT_EXEC_HOST in $EF_TOP/conf/
plugins/lsf/ef.lsf.conf

• On Moab®, use MOABWS_INTERACTIVE_SHARED_ROOT_EXEC_HOST in $EF_TOP/
conf/plugins/moabws/moabws.efconf

• On PBS Professional®, use PBS_INTERACTIVE_SHARED_ROOT_EXEC_HOST in
$EF_TOP/conf/plugins/pbs/ef.pbs.conf

• On Torque, use TORQUE_INTERACTIVE_SHARED_ROOT_EXEC_HOST in $EF_TOP/
conf/plugins/torque/ef.torque.conf

• On SLURM™, use SLURM_INTERACTIVE_SHARED_ROOT_EXEC_HOST in $EF_TOP/
conf/plugins/slurm/ef.slurm.conf

• On SGE, use SGE_INTERACTIVE_SHARED_ROOT_EXEC_HOST in $EF_TOP/conf/
plugins/sge/ef.sge.conf

• This configuration does not apply to Neutro

EnginFrame Administrator's Guide 115

9
Customizing Logging

Logging is an integral component to any software development project. During the development
stages it offers a valuable source of debugging information for the developer. During deployment it
can provide valuable operational data that allows administrators to diagnose problems as they arise.

Tomcat® Logging
EnginFrame is shipped with Apache Tomcat® servlet container. Tomcat® log files are the first source
of information concerning EnginFrame's status. Log files are located on EnginFrame Server's host
under $EF_TOP/logs/<HOSTNAME>/tomcat.

These are the most interesting log files:

• catalina.out

Contains Tomcat®'s Java™ process standard output and standard error. Tomcat® startup and
shutdown messages are written here.

• catalina.[yyyy]-[mm]-[dd].log

Contains Tomcat®'s and its libraries logging information on a day-by-day basis.

• localhost_access_log.[yyyy]-[mm]-[dd].txt

Contains all web accesses on a day-by-day basis. Any resource served by Tomcat is logged here
with information about the amount of transferred data. Also HTTP status codes like 404 Not
Found, 403 Forbidden are logged here.

• enginframe.[yyyy]-[mm]-[dd].log

Contains Tomcat®'s error logs about EnginFrame Portal not caught by EnginFrame itself.

The standard Tomcat® configuration fits the most common installations. In case of
specific needs you can modify the default $EF_TOP/<VERSION>/enginframe/conf/
logging.properties configuration. Refer to the official Tomcat® documentation fore more
details.

EnginFrame Server and Agent Logging

http://tomcat.apache.org/tomcat-7.0-doc/logging.html

Configuration Files

116 EnginFrame Administrator's Guide

Configuration Files

The default logging configurations are located under $EF_TOP/<VERSION>/enginframe/
conf:

• log.server.xconf

Contains server's configuration.

• log.agent.xconf

Contains agent's configuration.

Both are XML files with the same syntax.

In case you need to modify the defaults, you can specify a new configuration in the
log.server.xconf and log.agent.xconf files under the configuration directory
$EF_TOP/conf/enginframe.

In these files you can configure the location where to store log files, their verbosity level, rotation
policies. By default EnginFrame is configured to write only warning and error messages and to keep
a history of 4 log files with a 10 MB maximum size.

The log's default location is under $EF_TOP/logs/<HOSTNAME> on server and agent hosts:

• ef.log

Contains server's logging. It also contains the local agent's logs. It is located on server's host.

• agent.remote.stdout

Contains agent's process standard output. It is located on agent's host.

• agent.remote.stderr

Contains agent's process standard error. It is located on agent's host.

• agent.remote.log

Contains agent's process logging. It is located on agent's host.

If you need to quickly switch the log configuration to produce a verbose logging, you can
use log.server.verbose.xconf and log.agent.verbose.xconf files located in
$EF_TOP/<VERSION>/engifnrame/conf.

You just need to backup the previous log.server.xconf and log.agent.xconf files and
replace them with these verbose configurations.

It is not recommended to use a verbose logging configuration when you are in a production
environment. The performance impact of logging can be significant, depending on the logging
threshold that is configured and especially if a large number of users are accessing the portal.

Change Log Files Location

The EnginFrame logging system gives you complete flexibility on where to store log files. For
example you may want to move log files from their default location to store them on a high speed
file-system or to conform to your company's policies.

Change Log Files Size and Rotation
Policy

EnginFrame Administrator's Guide 117

The location configuration is done in the <targets> section by setting the <filename> tag. The
text inside this tag represents the path to the log file.

For example this XML text sets ${EF_LOGDIR}/ef.log for the core components:

<targets>
 <enginframe id="core">
 <filename>${EF_LOGDIR}/ef.log</filename>
 ...

You can also decide whether to append or overwrite existing files by using the <append> tag.

In the following example the log file will be overwritten on every server restart:

<targets>
 <enginframe id="core">
 <filename>${EF_LOGDIR}/ef.log</filename>
 <append>false</append>
 ...

Change Log Files Size and Rotation Policy

Each EnginFrame Server and EnginFrame Agent is configured to write log files up to 10 MB and
then to create another file to a maximum of 4 files. When a new log file is written the oldest one is
deleted. This configuration guarantees that each server and agent uses no more than 40 MB of disk
space for log files. You may want to change this rotation policy for example because you need more
history. A change may also be helpful if you have increased log verbosity.

Changing the <rotation> tag inside the <targets> section configures the rotation policy. The
max attribute defines the maximum number of files, while the <size> tag contains each file's size.

For example the following XML text defines a rotation of 5 files each one of 5 MB:

<rotation type="revolving" max="5">
 <size>5m</size>
</rotation>

Change Log Level

118 EnginFrame Administrator's Guide

Change Log Level

EnginFrame logging allows to have a fine grain control over which statements are printed. In a
development environment you may wish to enable all logging statements while in a production
environment it is suggested to disable debug messages to avoid performance issues. You can
configure this behavior by setting the appropriate log level. A log level describes the urgency of a
message. Below is a list of log levels that are usable within the EnginFrame logging system:

• NONE: No messages are emitted.

• DEBUG: Developer oriented messages, usually used during development of the product.

• INFO: Useful information messages such as state changes, client connection, user login etc.

• WARN: A problem or conflict has occurred but it may be recoverable, then again it could be the
start of the system failing.

• ERROR: A problem has occurred but it is not fatal. The system still functions.

• FATAL_ERROR: Something caused whole system to fail. This indicates that an administrator
should restart the system and try to fix the problem that caused the failure.

Each logger instance is associated with a log level. This allows you to limit each logger so that it only
displays messages greater than a certain level. So if a DEBUG message occurred and the logger's log
level was WARN, the message would be suppressed.

Changing the log-level attribute of a <category> tag sets log verbosity for the associated
catgory.

For example this XML tag defines a default category whose log-level is INFO:

<category name="" log-level="INFO">
 <log-target id-ref="core"/>
</category>

Fine Tune Logging

Define New Categories and Targets

In a complex system it is often not enough to suppress logging based on log-level. For instance you
may wish to log the network subsystem with DEBUG log-level while the simulator subsystem with
WARN log-level. To accomplish this EnginFrame uses categories. Each category is a name, made
up of name components separated by a ".". So a category named "network.interceptor.connected"
is made up of three name components "network", "interceptor" and "connected", ordered from left
to right. Every logger is associated with a category at creation. The left-most name component
is the most generic category while the right-most name component is the most specific. So
"network.interceptor.connected" is a child category of "network.interceptor", which is in turn a child
category of "network". There is also a root category "" that is hidden. The main reason for structuring
logging namespace in a hierarchical manner is to allow inheritance. A logger will inherit its parent
log-level if it has not been explicitly set. This allows you to set the "network" logger to have INFO log-
level and unless the "network.interceptor" has had its log-level set it will inherit the INFO log-level.

Fine Tune Logging

EnginFrame Administrator's Guide 119

Categories send messages to log targets. Decoupling log message generation from handling allows
developers to change destinations of log messages dynamically or via configuration files. Possible
destinations include writing to a database, a file, an IRC channel, a syslog server, an instant messaging
client, etc.

Adding a <category> tag inside the <categories> section defines a new category. You must
specify its name and log-target to which log messages are written. The name of the category
acts like a filter: all messages matching the category name are sent to the specified log-target.

For example if you want more information from EnginFrame's download component you can use the
category named com.enginframe.server.download:

<category name="com.enginframe.server.download" log-level="DEBUG">
 <log-target id-ref="core"/>
</category>

This configuration sends all download messages to the core target.

Another useful category is the deadspooler. The deadspooler category is used by EnginFrame
to write messages concerning spoolers that could not be deleted and were renamed as DEAD. NICE
support team recommends to turn this feature on. There is no overhead and it could be very useful
to know why an EnginFrame spooler could not be deleted. This category is activated by setting its
log-level to INFO:

<category name="deadspooler" log-level="INFO">
 <log-target id-ref="deadspooler"/>
</category>

Refer to EnginFrame Administrator's Reference for a complete list of categories EnginFrame uses.

Change Message Format

Log targets that write to a serial or unstructured store (i.e., file-system or network based targets)
need some method to serialize the log message before writing to the store. The most common way
to serialize the log message is to use a formatter.

The format specified consists of a string containing raw text combined with pattern elements. Each
pattern element has the generalized form:

%[+|-]#.#{field:subformat}

• +|- indicates whether the pattern element should be left or right justified (defaults to left justified
if unspecified.)

• #.# indicates the minimum and maximum size of output, if unspecified the output is neither
padded nor truncated.

• field indicates the field to be written and must be one of category, context, user,
message, time, rtime (time relative to start of application), throwable or priority. This
parameter is mandatory.

• subformat specifies whihc piece of field is interesting for log messages.

Use the <format> tag to set log message printing.

Fine Tune Logging

120 EnginFrame Administrator's Guide

For example the following code shows format setting for the core target:

<enginframe id="core">
 <filename>${EF_LOGDIR}/ef.log</filename>
 <format type="enginframe">
 %7.7{priority} %5.5{rtime} [%8.8{category}]:%{message}\n%{throwable}
 </format>
 ...

A number of examples for format and actual output follows.

• Example

Format:

%7.7{priority} %5.5{rtime} [%8.8{category}]:%{message}\n%{throwable}

Output:

DEBUG 123 [network.]: This is a debug message

• Example

Format:

%7.7{priority} %5.5{rtime} [%{category}]:%{message}\n

Output:

DEBUG 123 [network.interceptor.connected]: This is a debug message
DEBUG 123 [network]: This is another debug message

• Example

Format:

%7.7{priority} %5.5{rtime} [%10.{category}]:%{message}\n

Output:

DEBUG 123 [network.interceptor.connected]: This is a debug message
DEBUG 123 [network]: This is another debug message

EnginFrame Scriptlet Logging

EnginFrame Administrator's Guide 121

EnginFrame Scriptlet Logging
EnginFrame modularity lets developers add new features by deploying their plugins. If your plugin
uses scriptlets, you have the same logging support on which EnginFrame is based. As an administrator
you must know how to set up scriptlet logging for both development and production environments.

Creating $EF_TOP/<VERSION>/enginframe/plugins/<myplugin>/conf/
log.xconf or $EF_TOP/conf/plugins/<myplugin>/log.xconf on EnginFrame
Server's host enables scriptlet logging. This file has the same syntax as the ones shipped by
EnginFrame under $EF_TOP/<VERSION>/enginframe/conf, so all the information in the
section called “EnginFrame Server and Agent Logging” applies here too.

The scriptlet code can emit logging messages with any category and log level.

This is an example configuration file:

<?xml version="1.0"?>

<logkit>
 <factories>
 <factory
 type="enginframe"
 class="com.enginframe.common.utils.log.EnginFrameTargetFactory"/>
 </factories>

 <targets>
 <enginframe id="plugin">
 <filename>
 ${EF_LOGDIR}/myplugin.log
 </filename>
 <format type="enginframe">
 %7.7{priority} %5.5{rtime} [%{category}]:%{message}\n
 </format>
 </enginframe>
 </targets>

 <categories>
 <category name="myplugin" log-level="DEBUG">
 <log-target id-ref="plugin"/>
 </category>
 <category name="" log-level="WARN">
 <log-target id-ref="plugin"/>
 </category>
 </categories>
</logkit>

${EF_LOGDIR}/<myplugin>.log contains the log messages for this configuration. It exposes
only two categories: myplugin and the root one (it is the one that has an empty name.) If your code
uses myplugin category, then it logs DEBUG messages; if your code uses a category that is not defined,
then it logs WARN messages.

If the plugin log.xconf configuration files do not exist, then EnginFrame defaults to the core
log.server.xconf to define myplugin's logging categories.

EnginFrame Administrator's Guide 123

10
EnginFrame Licenses

This chapter describes how EnginFrame manages its licenses, where license files are located, the
meaning of license fields, how license tokens are counted, and how to check EnginFrame's license
token usage.

License Files Management
EnginFrame loads its license files from $EF_TOP/license. All files ending with .ef extension
are loaded.

Replace Old License

If you want to replace an EnginFrame license keeping the old one, you
should rename the license changing the .ef extension to something else,
e.g. appending .OLD extension to the original file. Otherwise EnginFrame
would also load the old license. Having two license for the same EnginFrame
component leads to a conflict issue

The EnginFrame license management system reads licenses dynamically from the file-system and it
is able to detect any changes you may apply to licenses even to recognize if license files were added
or removed.

Configuring License Files Location

As mentioned above $EF_TOP/license is the default directory where EnginFrame loads licenses
from. This directory can be changed making EnginFrame load licenses from another location in your
file-system.

Modifying EF_LICENSE_PATH parameter inside $EF_TOP/conf/enginframe/
server.conf and defining an absolute file-system path changes the directory EnginFrame uses
to load licenses.

Example:

EF_LICENSE_PATH=/mnt/server/ef-licenses

License File Format

124 EnginFrame Administrator's Guide

License File Format
An EnginFrame license is an XML file describing one or more EnginFrame licensed components or
plugins. EnginFrame's main component, the one that activates core functionalities, is EF Base.

The license fields are:

• product: what is being licensed, e.g. EnginFrame PRO

• release: EnginFrame's major release number, e.g. 2017.2

• format: license file format, e.g. 2.0

• component: component being licensed, example of components are EF Base, webservices,
etc.

• expiration: license expiration date. The value never means a perpetual license.

• ip: licensed IP addresses where EnginFrame can be deployed. It can be a single host IP, a range of
IPs, or a list of IP numbers. The license is valid if EnginFrame is running on one of the mentioned
hosts.

• type: one of DEMO, YEAR, or FULL.

• units: number of license tokens.

• units-per-user: number of tokens EnginFrame locks for each concurrent user.

• license-hosts: if true EnginFrame locks a token for each host in the underlying grid
infrastructure.

• hosts-preemption: if true EnginFrame releases tokens grabbed by hosts for new users
accessing the system. This happens when all tokens have been used.

• signature: license signature accounting all the license fields values.

An EnginFrame license example:

<?xml version="1.0"?>
<ef-licenses>
 <ef-license-group product="EnginFrame PRO" release="2017.0" format="2.0">
 <ef-license
 component="EF Base"
 vendor="NICE"
 expiration="2017-08-15"
 ip="80.20.156.116"
 licensee="RnD Team"
 type="DEMO"
 units="20"
 units-per-user="1"
 license-hosts="true"
 hosts-preemption="true"
 signature="..." <!-- Omitted for space -->
 />
 </ef-license-group>
</ef-licenses>

License Checking

EnginFrame Administrator's Guide 125

License Checking
The most important license fields are component, ip, expiration, and units. The first three
fields can be statically verified and basically depend on your EnginFrame deployment setup:

• Component unlocks core (value EF Base) but you must one for each licensed component you
have installed, e.g. webservices.

Send questions to <helpdesk@nice-software.com> for your requirements and to get help
on understanding which components you actually need to satisfy your goals.

• IP address depends on EnginFrame's host.

• Expiration date states how long your license is valid. Evaluation licenses last one month,
nevertheless NICE is flexible enough to release licenses with a life-time that satisfies your
evaluation needs. Please express them inside the request form at the download web site or via email
at <helpdesk@nice-software.com>.

EnginFrame Server's Host IP Address

You have to determine EnginFrame Server's host IP address for a valid license.

You can verify which IP address is correct for the license reuqest by executing
the following command:

ping `hostname`

which pings the host name returned by hostname and displays the same IP
address EnginFrame would use.

EnginFrame does not accept loopback IP address, like 127.0.0.1. If ping
returned a loopback address, EnginFrame Server's host name resolution has
to be properly configured, either editing /etc/hosts or changing DNS or
NIS or LDAP configurations.

The units field expresses the total number of license tokens. A detailed explanation of how
EnginFrame counts tokens follows.

License Token Count

As it could be guessed from the section called “License File Format” different scenarios have to
be considered when EnginFrame counts license tokens. The scenarios change according to different
combinations of some license fields.

License tokens are dynamically consumed by EnginFrame on the base of system usage and load,
e.g. the number of concurrent users or the number of hosts in the grid environment accessed through
EnginFrame. When EnginFrame consumes a token, it subtracts it from the total number of available
tokens expressed by the units license field.

Tokens acquired by a user are always released once the user logs out of the system or on his working
session expires. Users logging out (or on session expiry) release their tokens. Tokens acquired by
hosts are released only on pre-emption (if expressed in the license, for the needed amount) or when
EnginFrame is restarted (all tokens are released).

mailto:helpdesk@nice-software.com
mailto:helpdesk@nice-software.com

License Token Count

126 EnginFrame Administrator's Guide

The following scenarios depict how EnginFrame acquires and releases license tokens:

1.
license-hosts="true"
hosts-preemption="true"

EnginFrame acquires 1 token for each concurrent user accessing the system and 1 token for each
host in the underlying computing environment.

Since pre-emption on hosts tokens is switched on, when all the tokens are consumed, further users
logging into system are granted access by reclaiming one token from those acquired by hosts. The
host whose token has been reclaimed is now unlicensed.

If all tokens are consumed and there are no more tokens to pre-empt, system access is denied.

Available tokens are dynamically acquired by users or hosts.

EnginFrame does not show unlicensed hosts details (kind of host, status, memory consumption,
etc.)

2.
license-hosts="true"
hosts-preemption="false"

As in the previous scenario, EnginFrame acquires 1 token for each concurrent user accessing the
system and 1 token for each host in the underlying computing environment.

Differently from the previous scenario, tokens consumed by hosts are never released. Only
restarting EnginFrame resets host's license token status.

When all the tokens are consumed the system denies further accesses.

Available tokens are dynamically acquired by users or hosts.

Unlicensed hosts are managed as in scenario 1.

3.
license-hosts="false"
units-per-user="<n>"

In this scenario EnginFrame acquires n tokens for each concurrent user, where n is a positive
integer. No tokens are acquired by hosts meaning they are all licensed.

This kind of license fits all those cases where you deal with big or growing clusters and it is more
convenient to have a flat license for the number of hosts. Or you just do not want to bother with
license issues concerning hosts.

When all the tokens are consumed (by users) the system denies further accesses. In this case there
is no token reclaiming since hosts do not acquire tokens.

List of Licensed Hosts

An optional list of licensed hosts for scenarios 1 and 2 can be created. This list spares license tokens
though limiting cluster view through EnginFrame.

Monitoring License Usage

EnginFrame Administrator's Guide 127

Create license.hostlist in EF_LICENSE_PATH declaring the list of licensed hosts. The file
has to contain the host names, one per line. The host names must be reported as the job scheduler does.

A $EF_TOP/license/license.hostlist example:

host-linux1.nice
host-linux2.nice
host-linux3.nice
host-unix1.nice
host-win1.nice
host-win2.nice

Monitoring License Usage

License token consumption is an important aspect for an EnginFrame administrator.

The EnginFrame administration portal provides administrators with installed licenses view and with
used license token details. Loaded licenses with their field values are shown as follows:

Figure 10.1. EnginFrame License Details

The license token consumption details is also presented:

Monitoring License Usage

128 EnginFrame Administrator's Guide

Figure 10.2. EnginFrame License Tokens Status

You can monitor the total number of used tokens, which users have logged in, and which hosts are
currently licensed. In the preceding example EnginFrame acquired a license token for all reported
users and hosts.

Note

The same user name (but not necessarily the same physical person) connecting
from a different workstation or different browser at the same time, consumes
an extra token. Tokens are not acquired nominally but per concurrent user.

You can also check if there were token reclaims in the system. The value reported is the max number
of reclaimed tokens since EnginFrame's last restart:

Enable Debug Log Messages for
Licenses

EnginFrame Administrator's Guide 129

Figure 10.3. EnginFrame License Tokens Status With Reclaims

In the picture above there were two token reclaims. All 8 tokens were consumed by 6 hosts and 2
users. The next two requests from paolo and aware were satisfied but required 2 token reclaims
from the hosts.

Enable Debug Log Messages for Licenses

If you are experiencing problems with the EnginFrame license system and you need support from the
NICE Support Team or even if you want to check by yourself the details of license management, it
is important to rise license management module's log level.

You can enable license module's debug log level by editing log.server.xconf and adding the
category:

<category name="com.enginframe.common.license" log-level="DEBUG">
 <log-target id-ref="core"/>
</category>

Otherwise just use log.server.verbose.xconf which has this category's log level already
set to DEBUG.

Refer to Chapter 9, Customizing Logging for more details about logging configuration.

PART III

Security

EnginFrame Administrator's Guide 133

11
Authentication Framework

The EnginFrame authentication framework is extremely flexible and supports out of the box many
different mechanisms.

Furthermore, you can easily write your own custom mechanism to authenticate users when standard
methods do not meet your company rules.

Standard EnginFrame Authentication Authorities

EnginFrame is shipped with these standard authentication mechanisms

• PAM

• LDAP

• HTTP

• Active Directory

• Certificate

Default Authority

You choose default authentication method used to access services during installation. This value can
be changed setting EF_DEFAULT_AUTHORITY property in server.conf, like in this example:

EF_DEFAULT_AUTHORITY=pam

Default authentication method is used by all services having ef:agent's authority attribute set to
${EF_DEFAULT_AUTHORITY} as in this example:

<ef:agent xmlns:ef="http://www.enginframe.com/2000/EnginFrame"
 id="tutorial"
 authority="${EF_DEFAULT_AUTHORITY}">

User Mapping

134 EnginFrame Administrator's Guide

The authority can also be expressed at ef:service level to override the default one defined in
the root ef:agent tag.

User Mapping
In some deployments users log into the EnginFrame Portal with an username that differs from their
user account on the underlying computing environment. EnginFrame supports this situation providing
a way to configure User Mapping, which allows to map a username provided at login time to a
username of the underlying operating system.

For instance, the user John Smith could log into the EnginFrame Portal using the whole string John
Smith and submit a job which is executed as the user jsmith on the underlying Unix® computing
environment.

In some cases user mapping can also be used to map different users of the portal to the same system
account or vice versa to map the same user to different accounts on separate systems.

Mapping root Account

You cannot map users to the root account.

All authentication modules shipped with EnginFrame support user mapping.

To enable it you need to

• set to true the EFAUTH_USERMAPPING parameter in the $EF_TOP/conf/
plugins/<authority>/ef.auth.conf file

• add a script called ef.user.mapping in the EF_ROOT/plugins/<authority>/bin
directory of the authentication module

• set the ownership of file ef.user.mapping to root:root and its permissions to 755
(rwxr-xr-x)

The ef.user.mapping script must produce as output the username to which the user being
authenticated is mapped. This mechanism provides full custom flexibility to user mapping
mechanism.

A trivial example of the ef.user.mapping script could be

#!/bin/sh

echo “jsmith”

which maps all the portal users to the unique jsmith user.

A more significative example of user mapping involves reading a file where each line specifies a
mapping using the Login Name=username format.

For instance let's consider a file named EF_ROOT/plugins/<authority>/conf/
user.mapping with the following content:

Configuring NICE EnginFrame
Authorities

EnginFrame Administrator's Guide 135

simple mapping file
#
Syntax: loginname=unixaccount
#

Lucy Johnson=ljohnson
John Smith=jsmith

Our ef.user.mapping script tries to match the name provided by the user during login with the
ones present on the left-hand side of the equal sign in the user.mapping file and map it to the
corresponding account name:

#!/bin/sh

read login name from command line
_loginname="$1"

mapping file
_mappingfile=`dirname "$0"`"/../conf/user.mapping"

transform login name so it can be used by sed in a safe way
_happysed=`echo "${_loginname}" | sed \
 -e 's#\\\\#\\\\\\\\#g' \
 -e 's#/#\\\\/#g' \
 -e 's/\\./\\\\./g' \
 -e 's/\\[/\\\\[/g'
`
extract mapped unix account
_mapping=`sed -n 's/^'"${_happysed}"'=\(.*\)$/\1/p' "${_mappingfile}"`

check with case insensitive flag if necessary
if [-z "${_mapping}"] ; then
 _mapping=`sed -n 's/^'"${_happysed}"'=\(.*\)$/\1/pi' "${_mappingfile}"`
fi

print first result
if [-n "${_mapping}"] ; then
 echo "${_mapping}" | sed 'q'
else
 exit 1
fi

Configuring NICE EnginFrame Authorities
Besides the user mapping feature described in the previous section, some of the authorities shipped
with EnginFrame have additional configuration parameters that can be changed to tailor the
authentication process to your environment.

PAM

The pluggable authentication modules (PAM) authority authenticates a user using the PAM method
of the Operating System.

The PAM_SERVICE parameter in the $EF_TOP/conf/plugins/pam/ef.auth.conf file on
your Agent host specifies which PAM service is used for the authentication.

LDAP

136 EnginFrame Administrator's Guide

LDAP

This authority authenticates users querying a LDAP database. The settings in the $EF_TOP/conf/
plugins/ldap/ef.auth.conf file on your Agent host allows you to to specify the location of
the LDAP server to use and customize access to the database.

The following parameters are available

• LDAP_LDAPSEARCH: the absolute path to the ldapsearch executable

• LDAP_SERVER: LDAP Server name or IP address

• LDAP_PORT: LDAP Server port

• LDAP_BASE: the base DN (Distinguished Name) for the search operation in the LDAP database

Active Directory

This authority authenticates users querying an Active Directory database. The settings in the
$EF_TOP/conf/plugins/activedirectory/ef.auth.conf file on your Agent host
allows you to to specify the location of the Active Directory server to use and customize access to
the database.

The following parameters are available

• AD_LDAPSEARCH: the absolute path to the ldapsearch executable

• AD_SERVER: LDAP Server name or IP address

• AD_PORT: LDAP Server port

• AD_BASE: the base DN (Distinguished Name) for the search operation in the Active Directory
database

• AD_BINDAS: user that has permissions to bind to Active Directory Server for queries

• AD_BINDPWD: password for user binding to Active Directory Server

HTTP

HTTP authentication is slightly different from the other EnginFrame authentication methods: HTTP
authentication is actually accomplished by the Web Server.

Once the user has been authenticated by the Web Server, the EnginFrame HTTP authentication
authority allows you to perform some initialization steps. In particular it allows you to take advantage
of the User Mapping feature described in the section called “User Mapping” in order to map the
EnginFrame Portal users to the underlying operating system usernames.

Useful Software

When using HTTP authentication, in the case you need to configure a user
mapping that retrieves information from an LDAP Server the openldap
software can be useful.

Certificate

EnginFrame Administrator's Guide 137

Certificate

Certificate authority relies on X.509 certificates to encrypt the channel, check client identity and
finally to authenticate users.

The web server in front of EnginFrame must be configured to use X.509 certificates for HTTPS
channel encryption and client authentication while user identity is then determined by the Certificate
authority within EnginFrame.

The web server configured to use certificates can be either Apache Tomcat® shipped with
EnginFrame or an external web server as Apache® Web Server connected to NICE EnginFrame
Tomcat® using the the AJP connector.

The client in order to successfully authenticate to EnginFrame must provide a valid certificate the
web server recognizes and trusts, and a username to be used by EnginFrame to log in.

EnginFrame can be configured to retrieve the username from the first Common Name (CN) field
of the Distinguished Name (DN) certificate property or from the HTTP request parameter named
_username.

The parameter to configure where EnginFrame should look for the client username is
authorization.certificate.userCertificate into server.conf configuration
file. When true the username is retrieved from the CN field of the DN in the client certificate,
false for retrieving the username from the client HTTP authentication request.

Even with the Certificate authority it is possible to take advantage of the User Mapping feature
described in the section called “User Mapping” in order to map the EnginFrame Portal users to the
underlying operating system usernames.

Custom Authentication Authority
If none of the standard mechanisms included in EnginFrame satisfies your requirements, you can
easily create your own authentication algorithm.

The process of writing a custom EnginFrame authentication module involves the development of the
following components

• The EF_ROOT/plugins/<authority>/etc/<authority>.login file to specify the
fields the users must fill in order to authenticate. The field values will then be passed to the
following authentication module at login time

• The EF_ROOT/plugins/<authority>/bin/ef.auth authentication module script. It
receives authentication field values filled by the user as input in order to accomplish the
authentication task

Once the new authority is ready it can be used in the authority attribute for ef:agent and
ef:service tags in the SDF as usual.

Warning

If one of the authentication authorities included in EnginFrame does not
completely satisfy your requirements, do not modify EnginFrame system files:
create your own authority, using the ones provided by EnginFrame as a
starting point.

The <authority>.login File

138 EnginFrame Administrator's Guide

Modifying one or more of the EnginFrame system files could corrupt the
system. You are strongly recommended to leave EnginFrame system files
as is. You should modify EnginFrame system files only if you are sure of
what you are doing. By no means NICE or one of its partners responds for
EnginFrame unresponsiveness if a system file has been modified. Besides
this, a future EnginFrame update could override (without warning) your
modifications.

The <authority>.login File

This XML file defines the authentication parameters required by the authentication script to check
user credentials.

This file specifies the information (e.g. username, token, password, ...) prompts for the logon pages
associated with the authentication module.

Login file must match the authority name (the name that is going to be used in the EnginFrame SDF)
and must be located under the directory EF_ROOT/plugins/<authority>/etc. For security
reasons the file ownership must be set to root:root and its permissions must be 644 (rw-r--
r--).

For instance the login file for authority pam must be: EF_ROOT/plugins/pam/etc/
pam.login

The <authority>.login file has the following structure:

<ef:login title="login_form_title"
 xmlns:ef="http://www.enginframe.com/2000/EnginFrame">;
 <ef:signature label="login_field_label"
 type="text|password"
 id="authentication_parameter_name" />;
 <!-- [<ef:signature ... />] -->
</ef:login>

Here an example (taken from pam authority):

<ef:login title="Login to EnginFrame">
 <ef:signature label="Username: "
 type="text"
 id="_username"/>
 <ef:signature label="Password: "
 type="password"
 id="_password"/>
</ef:login>

The ef:login entry corresponds to an authentication HTML page. Referring to the example, the
HTML logon page asks users to enter a text token (the username) and a password.

Note

The authentication parameters <ef:signature> with id=_username
and id=_password (the <ef:signature> tags of the pam.login

The ef.auth File

EnginFrame Administrator's Guide 139

example) are strongly suggested. If the parameter _username is not used,
there must be the <ef:user-mapping> XML in the authentication process
output in order to set a proper user name in EnginFrame.

Please refer to EnginFrame Administrator's Reference for details on the XML format used by the
<authority>.login file.

The ef.auth File

The script ef.auth actually implements the authentication procedure.

It must reside under the directory EF_ROOT/plugins/<authority>/bin

where <authority> must match the authority name that is going to be used in the EnginFrame SDF.
For security reasons the file ownership must be set to root:root and its permissions must be 755
(rwxr-xr-x).

For instance the authentication script for the LDAP authority is EF_ROOT/plugins/ldap/bin/
ef.auth.

The authentication script receives as input the login form parameters values filled by the user. Such
values, separated by '\0' character (ASCII code 0), are directly passed to the standard input of the
script in the same order, as they have been defined in the <authority>.login file.

Let's use the pam authority as an example. When user demo with password secret logs into
EnginFrame, the string demo\0secret\0 is passed to the standard input of the ef.auth script.

The authentication script checks the credentials passed as input and writes the response to the standard
output. In case of a positive answer it must emit the following XML structure:

<?xml version="1.0"?>
<ef:auth xmlns:ef="http://www.enginframe.com/2000/EnginFrame">

 <ef:result>
 <ef:grant />
 </ef:result>

</ef:auth>

For a negative answer:

<?xml version="1.0"?>
<ef:auth xmlns:ef="http://www.enginframe.com/2000/EnginFrame">

 <ef:result>
 <ef:deny />
 </ef:result>

 <ef:error> <!-- Not mandatory -->
 <ef:message>error_message</ef:message>
 </ef:error>

</ef:auth>

If you want to support user mapping in your custom authentication authority, in case of positive
answer the ef.auth script should include the ef:user-mapping tag in its output:

The ef.auth File

140 EnginFrame Administrator's Guide

<?xml version="1.0"?>
<ef:auth xmlns:ef="http://www.enginframe.com/2000/EnginFrame">

 <ef:result>
 <ef:grant />
 <ef:user-mapping name="target_username"/>
 </ef:result>

</ef:auth>

where target_username is the username that should be used on the underlying operating system.

It is usually a good practice to move the user mapping logic to a separate script that can be
changed without editing ef.auth itself. As described in the section called “User Mapping”,
authentication modules shipped with EnginFrame follow the convention of using EF_ROOT/
plugins/<authority>/bin/ef.user.mapping.
If you follow this advice, your ef.auth script will have the following structure:

[Get credentials]

[Verify credentials]

[If User is authenticated]
 ACTUAL_USERID=[Custom User Mapping procedure]

 [Emit]
 <?xml version="1.0"?>
 <ef:auth xmlns:ef="http://www.enginframe.com/2000/EnginFrame">
 <ef:grant/>
 <ef:user-mapping name="$ACTUAL_USERID"/>
 </ef:auth>
 [end]
[end]

Tip

You can refer to the authentication plugins shipped with EnginFrame to see
some examples of how the ef.auth scripts may be implemented

EnginFrame Administrator's Guide 141

12
Authorization System

The EnginFrame Authorization System allows you to control in a fine-grained fashion which users
can access the EnginFrame resources, granting or denying operations according to a set of predefined
policies.

In the EnginFrame Authorization System users and groups are called Actors, the resources are
EnginFrame SDF folders, services, service options, service actions and service output, while policies
defining the permissions are specified using access control lists (ACL).

The authorization framework defines who can do what on which resources. By configuring the
authorization system, it is possible to give different views of the EnginFrame Portal to different users
and user groups.

Configuring Authorization

EnginFrame authorization settings are specified in the following configuration files. The ACLs and
Actors defined in all of them are merged. In case of multiple definitions of the same ACLs or Actors
(same id), the file priority is used to resolve conflicts.

• $EF_TOP/conf/enginframe/authorization.xconf - highest priority

• $EF_TOP/<VERSION>/enginframe/conf/authorization.xconf

• $EF_TOP/conf/plugins/<plug-in>/authorization.xconf

• $EF_TOP/<VERSION>/enginframe/plugins/<plug-in>/conf/
authorization.xconf - lowest priority

Modifications to these files are automatically picked up by a running EnginFrame Server, without
requiring a restart.

The authorization.xconf file is an XML file consisting of two sections

• An Actors section introduced with the tag <ef:acl-actor-list>

• An Access Control Lists section starting with the tag <ef:acl-list>

Defining Actors

142 EnginFrame Administrator's Guide

<ef:authorization>
 <!-- EnginFrame Authorization Actors section -->
 <ef:acl-actor-list>
 ...
 </ef:acl-actor-list>
 <!-- EnginFrame Authorization ACL section -->
 <ef:acl-list>
 ...
 </ef:acl-list>
</ef:authorization>

Defining Actors

Actors are entities able to perform actions on resources. In the EnginFrame infrastructure an Actor
can be a user, a group of users, or a group of groups of users and so on.

Since an Actor can be a single user or a group, we refer to each component with the term member.

There are three ways to define an actor

• efgroup Actor: is an explicit list of members. It can contain one or more users or even other Actors
already defined.

• osgroup Actor: the members will be the users belonging to the Operating System group with the
same id of this actor

• user Actor: an actor for a single EnginFrame user. It exists just for "renaming" purposes because
usually there is no need to wrap an EnginFrame user id in an Actor

The XML syntax to define actors inside authorization.xconf is the following

<ef:acl-actor id="unique_id” type="efgroup|osgroup">

and an actor of type efgroup must include members defined with

<ef:acl-member type="efuser|acl-actor">...</ef:acl-member>

Note

When using a member of type acl-actor the actor must be defined in the
authorization.xconf

Here follows an example of an Actors section:

Defining Access Control Lists

EnginFrame Administrator's Guide 143

...
<!-- EnginFrame Authorization Actors section -->
<ef:acl-actor-list>
 <!-- Actor made up of two simple users and two Actors -->
 <ef:acl-actor id="nice" type="efgroup">
 <ef:info>NICE people</ef:info>
 <ef:acl-member type="efuser">andrea</ef:acl-member>
 <ef:acl-member type="efuser">beppe</ef:acl-member>
 <ef:acl-member type="acl-actor">
 developers
 </ef:acl-member>
 <ef:acl-member type="acl-actor">efadmin</ef:acl-member>
 </ef:acl-actor>
 <ef:acl-actor id="developers" type="efgroup">
 <ef:info>EnginFrame Developers</ef:info>
 <ef:acl-member type="efuser">antonio</ef:acl-member>
 <ef:acl-member type="efuser">mauri</ef:acl-member>
 <ef:acl-member type="acl-actor">goldrake</ef:acl-member>
 </ef:acl-actor>
 <!--
 Member of this Actor are dynamically loaded from the
 Operating system group “efadmin” using the script:
 NICE_ROOT/enginframe/plugins/myplugin/bin/ef.load.users
 -->
 <ef:acl-actor id="efadmin" type="osgroup" plugin="myplugin"/>
</ef:acl-actor-list>
...

Defining Access Control Lists

ACL define policies to be applied to Actors when they try to perform actions on resources.

The purpose of an ACL is to grant or deny permissions on actions an EnginFrame Actor can perform
without reference to the resource on which the ACL is applied.

An ACL consists of three main parts. The first section it is used to "bias" the ACL towards the allow
or the deny directive. The following two parts define allow and deny directives, in which Actors are
bound with the actions they can or cannot perform.

The ACL structure explanation follows

• ACL priority, defines if the allow or deny directive has priority for this ACL

• allow priority: access is allowed by default. The deny directives are evaluated before the allow
ones. Any Actor which does not match a deny directive or does match an allow directive will
be allowed access to the resource;

• deny priority: access is denied by default. The allow directives are evaluated before the deny
ones. Any Actor which does not match an allow directive or does match a deny directive will
be denied access to the resource

• ACL allow, it contains the allow directives, a list of Actors in which a set of actions specifies the
operations the Actor can actually perform on a generic resource guarded by this ACL.

• ACL deny, it contains the deny directives, a list of Actors in which a set of actions specifies the
operations the Actor cannot perform on a generic resource guarded by this ACL.

Defining Access Control Lists

144 EnginFrame Administrator's Guide

The definition of an ACL adheres to this XML structure:

...
 <ef:acl id="unique_id”>
 <ef:acl-priority>allow | deny</ef:acl-priority>
 <ef:acl-allow>
 <ef:actor id=”actor_id”>
 <ef:action-list>
 <ef:read/>
 <ef:execute/>
 ...
 </ef:action-list>
 </ef:actor>
 </ef:acl-allow>
 <ef:acl-deny>
 <ef:actor id=”actor_id”>
 <ef:action-list>
 <ef:read/>
 <ef:execute/>
 ...
 </ef:action-list>
 </ef:actor>
 </ef:acl-deny>
 </ef:acl>
...

The id attribute of an ef:actor can refer to a predefined ef:acl-actor or directly to an
EnginFrame user id.

There are four kinds of actions EnginFrame can accept. The action meaning and the consequent
EnginFrame behavior depends on the type of the resource the ACL is applied to

• <ef:read/>

• <ef:write/>

• <ef:execute/>

• <ef:delete/>

Here an example of an ACL definition follows:

Condition Based ACL

EnginFrame Administrator's Guide 145

...
 <ef:acl-list>
 ...
 <ef:acl id="priv-exec">
 <ef:info>Privileged permissions for Admins</ef:info>
 <ef:acl-priority>deny</ef:acl-priority>
 <ef:acl-allow>
 <ef:actor id="efadmin">
 <ef:action-list>
 <ef:read/>
 <ef:write/>
 <ef:execute/>
 <ef:delete/>
 </ef:action-list>
 </ef:actor>
 </ef:acl-allow>
 </ef:acl>
 ...
 </ef:acl-list>
 ...

Condition Based ACL

An ACL can include some extra conditions that have to be met in order to grant access to a resource.

These conditions can take into account the value of session variables, system properties, and xpath
expressions and be combined using logical the operators or, and, not, and equals.

The concept is best explained with an example:

Condition Based ACL

146 EnginFrame Administrator's Guide

...
<ef:acl-list>
 ...
 <ef:acl id="project-acme">
 <ef:info>
 Privileged permissions for Project ACME
 </ef:info>
 <ef:acl-priority>deny</ef:acl-priority>
 <ef:acl-allow>
 <ef:actor id="company-users">
 <ef:condition>
 <ef:or>
 <ef:and>
 <ef:equals type=”session”
 id=”project”
 value=”acme”
 casesensitive=”true”/>
 <ef:equals type=”session”
 id=”${project}_responsible”
 value=”true”
 casesensitive=”false”/>
 </ef:and>
 <ef:and>
 <ef:equals type=”session”
 id=”administrator”
 value=”true”
 casesensitive=”false”/>
 <ef:not>
 <ef:equals type=”property”
 id=”${EF_USER}”
 value=”jack”
 casesensitive=”true”/>
 </ef:not>
 </ef:and>
 </ef:or>
 </ef:condition>
 <ef:action-list>
 <ef:read/>
 <ef:write/>
 <ef:execute/>
 <ef:delete/>
 </ef:action-list>
 </ef:actor>
 </ef:acl-allow>
 </ef:acl>
 ...
</ef:acl-list>

The current user can access resources guarded by the ACL "project-acme" only if one of the following
conditions is true

• he belongs to "company-users" and the session variable "project" is present and its value
is "acme" and the session variable "acme_responsible" is set to "true" independently
from the case of letters

• the session variable "administrator" is “true” independently from case of letters and is not
named "jack"

Condition Based ACL

EnginFrame Administrator's Guide 147

The ef:and and ef:or tags are condition containers and they evaluate to true respectively when
all the included conditions evaluate to true or when at least one of them does.

The ef:not may contain only one condition and it negates the result of its evaluation.

The ef:equals tag checks two arguments for equality. The arguments to check are defined by the
type and by the id attributes. The casesensitive attribute specifies if the letter case should
be taken into account or not.

The type can refer to three different kinds of values:

Session variables
The value to be compared is the one of a session variable with the specified id.

For instance in the example above

<ef:equals type=”session”
 id=”administrator”
 value=”true”
 casesensitive=”false”/>

EnginFrame checks if a session variable names administrator is defined and its value is
true.

System properties
The value to be compared is the one of a system property with the specified id. EnginFrame
system properties are the ones loaded by the JVM, the ones passed to the JVM via command line
(i.e. –Dname=value), and the ones loaded from the EnginFrame configuration files.

<ef:equals type=”property”
 id=”${EF_USER}”
 value=”mary”
 casesensitive=”true”/>

EnginFrame checks if the system property named ${EF_USER} has value mary.

XPath expressions
The value to be compared is the one extracted from the current DOM by the xpath expression
specified in the id attribute.

For instance

<ef:equals type=”xpath”
 id=”starts-with(//ef:profile/ef:user/., ‘br’)”
 value=”true”
 casesensitive=”true”/>

checks if the DOM element //ef:profile/ef:user/text() starts with br.

EnginFrame Administrator's Guide 149

13
Configuring HTTPS

HTTPS, Hypertext Transfer Protocol over Secure Socket Layer, is a URI scheme used for secure
HTTP connections.

This system was designed to provide authentication and encryption and is widely used for security-
sensitive communication such as payment transactions and corporate logons.

During the installation process, EnginFrame installer allows to automatically configure Apache
Tomcat® to use HTTPS connector instead of plain HTTP. By default EnginFrame installs configuring
HTTP protocol in the Apache Tomcat® web server.

Choosing HTTPS, the installer will automatically create self-signed certificates under the directory
$EF_TOP/conf/tomcat/conf/certs and will configure the Apache Tomcat® connector to
use them.

Change HTTPS certificates

If self-signed certificates do not suit your needs or you already have valid certificates to setup an
HTTPS web server, you should refer to the Apache Tomcat® official documentation in order to
properly configure the web server to use your certificates.

Depending on the format of the available certificate there are different procedure to follow to setup
the Apache Tomcat® connector.

For example, starting from a PEM private key and PEM certificate, they need to be converted first in
order to be handled by Java™ keytool and keystores, as recommended by the Apache Tomcat®
documentation.

In this case the first step would be to convert PEM key and certificate into PKCS12 format:

$ openssl pkcs12 -export -in <your_CA_signed_PEM_cert>
 -inkey <your_PEM_private.key> -out <your_certificate_name>.p12
 -name tomcat -chain -CAFile <your_root_CA_certificate>

Next, the newly created PKCS12 certificate should be imported into a Java™ keystore file:

http://en.wikipedia.org/wiki/Https
http://en.wikipedia.org/wiki/URI_scheme
http://en.wikipedia.org/wiki/HTTP
http://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html

Change HTTPS certificates

150 EnginFrame Administrator's Guide

$ $JAVA_HOME/bin/keytool -importkeystore -deststorepass <password>
 -destkeypass <password> -destkeystore tomcat.keystore
 -srckeystore <exported_private_key_and_cert.p12> -srcstoretype PKCS12
 -srcstorepass <password> -alias tomcat

If your CA has intermediate certificates, you should import them into the keystore file. It is very
likely that your CA provides instructions on how to do this and how the certificates should be named.
For example, assuming a CA intermediate certificate is already in a format supported by Java™
keytool, it can be simply imported in this way:

$ $JAVA_HOME/bin/keytool -import -alias intermed -keystore tomcat.keystore
 -trustcacerts -file gd_intermediate.crt

You may also need to import the root CA certificate into the keystore in the case it doesn't come from
one of the well known CAs whose root certificates are pre-configured in the Java™ system.

For reference on how to use the keytool and openssl commands, please look at the official
documentation.

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
https://www.openssl.org/

EnginFrame Administrator's Guide 151

Index

Symbols
<authority>.login, 138

A
Access Control Lists, 141, 143

actions, 144
allow, 143
conditional operators, 145, 146
Condition Based, 145
Defining, 143
deny, 143
priority, 143

Actors, 141
Defining, 142
efgroup, 142
osgroup, 142
user, 142

Agent
agent.conf, 67, 74, 75
configuration, 67, 74, 75
log.agent.xconf, 67, 115
logging, 67, 115
ports, 74

agent.conf, 67, 74, 75
Apache®

connection with Tomcat®, 77
Authentication, 37, 133

Authorities, 133
Authority

Custom, 137
Default, 133
LDAP, 139

ef.user.mapping, 134
EFAUTH_USERMAPPING, 134
user mapping

Default, 134
authorization

authorization.xconf, 67
configuration, 67

Authorization, 141
authorization.xconf, 141
Configuring, 141
policies, 141
resources, 141

users, 141
authorization.xconf, 67, 141

C
Charts

configuration, 79
configuration, 65

Agent, 67
ports, 74

agent.conf, 67, 74, 75
authorization, 67
Charts, 79
default Agent, 69
enginframe.conf, 67
error page, 73
files, 65
Java™, 69
log.agent.xconf, 67
log.server.xconf, 67
logging, 67, 67
media types, 70
mime-types, 70
mime-types.xml, 67, 70
plugin, 68
ports, 74
Server, 67
server.conf, 67
service output, 74
session timeout, 77
users, 75

D
Deployment Strategies, 33
Downloading, 19

E
EF_SPOOLER_DIR, 105

configuring, 108
permissions, 106

ef.auth, 139
ef.download.server.url, 109
ef.download.stream.inactivity.timeout, 109
ef.download.stream.sleep.time, 109
ef.reaper.sleep.time, 111

Index

152 EnginFrame Administrator's Guide

ef.repository.dir, 110
enginframe.conf, 67
EnginFrame Portal, 55

accessing, 58
script, 55
start, 55
status, 56
stop, 55

error page, 73

H
HTTPS

configuring, 149
Tomcat®, 149

I
Installation

Batch, 46
Fine Tuning, 46
Unix®, 45

Installation Directories, 34
INTERACTIVE_SHARED_ROOT

permissions, 114

J
Java™

configuration, 69

L
License, 19
licenses, 123

checking, 125
directory, 123
files format, 124
files location, 123
host, 126
host list, 126
location, 123
logging, 129
monitoring, 127
token, 125

log.agent.xconf, 67, 115
log.server.xconf, 67, 115
logging, 115

Agent, 115
configuration, 67, 67, 115
configuring categories, 118
file location, 116
file size, 117
level, 118
licenses, 129

message format, 119
policy, 117
Scriptlet, 121
Server, 115
Tomcat®, 115

M
mime-types.xml, 67, 70

P
plugin, 68

configuration, 68
custom, 68
official, 68

Prerequisites, 21

R
Requirements

Network, 30
RMI, 74

S
Scriptlet

logging, 121
Server

configuration, 67
log.server.xconf, 67, 115
logging, 67, 115
server.conf, 67

server.conf, 67
service output

configuration, 74
session

configuration, 77
sessions, 113
session-timeout, 77
spooler, 105

configuring, 108
dead, 111
download, 109
download files, 109
EF_SPOOLER_DIR, 105
ef.download.server.url, 109
ef.download.stream.inactivity.timeout, 109
ef.reaper.sleep.time, 111
ef.repository.dir, 110
life cycle, 110
permissions, 106
reaper, 111
repository location, 110
requirements, 106

Index

EnginFrame Administrator's Guide 153

root directory, 108, 108
security, 106
structure, 105

T
token

license, 125
Tomcat®

connection with Apache®, 77
logging, 115

U
Users

Special, 36
users

configuration, 75, 77
session timeout, 77
switching, 75

W
web.xml

session-timeout, 77

	EnginFrame Administrator's Guide
	Contents
	Welcome
	About This Guide
	Who Should Read This Guide
	What You Should Already Know

	Learn About NICE Products
	World Wide Web
	NICE EnginFrame Training
	NICE EnginFrame Documentation

	Get Technical Support
	NICE Support Contacts
	Collect Support Information

	Part I. Getting Started
	Chapter 1. About NICE EnginFrame
	Architectural Overview
	Basic Execution Flow
	Basic Deployment
	Distributed Deployment
	File Downloads
	Interactive Session Broker
	Deployment
	Execution Flow

	EnginFrame Plugins

	EnginFrame Enterprise
	Architecture
	Software Distribution and License
	Deployment

	Chapter 2. Obtaining NICE EnginFrame
	Downloading EnginFrame
	Obtaining a License
	Licensed Plug-ins

	Chapter 3. Planning NICE EnginFrame Deployment
	Prerequisites
	System Requirements
	Third-party Software Prerequisites
	Java™ Platform
	Database Management Systems
	Authentication Mechanisms
	Distributed Resource Managers
	Required DRM Configuration

	Session Brokers
	Required Session Brokers Configuration

	Remote Visualization Technologies
	Remote Visualization Technologies Configuration
	NICE DCV 2017.0 or later on Linux
	NICE DCV 2017.0 or later on Windows

	Network Requirements
	Supported Browsers
	Interactive Plugin Requirements
	Single Application Desktop Requirements (Linux®)
	Shared File System Requirements

	EnginFrame Enterprise System Requirements
	Shared File System
	Network Load Balancing

	Deployment Strategies
	Installation Directories
	Special Users
	Authentication
	DRM Configuration for Interactive Plugin
	NICE Neutro
	IBM® Platform™ LSF® or OpenLava
	Configuring Queues
	Requirements on scheduler tools
	Additional requirements for Windows® sessions
	OpenLava 3.0 or above

	Torque or PBS Professional®
	Configuring Queues

	SGE, Oracle® Grid Engine (OGE), Son of Grid Engine (SoGE) or Univa® Grid Engine® (UGE)
	Configuring Queues

	Adaptive Computing® Moab®
	SLURM™

	Chapter 4. Installing NICE EnginFrame
	Installing
	Batch Installation

	Fine Tuning Your Installation
	Spooler Download URL
	Optimizing JDK Options
	Distributed Resource Manager Options
	Cluster Name Label

	Interactive Plugin
	Distributed Resource Manager
	Remote Visualization Technology

	EnginFrame Enterprise Installation
	Load Balancer Setup
	Configure AJP Connector
	Configure Apache® Proxy
	Configure Apache® mod_proxy_balancer

	DBMS Setup
	EnginFrame Configuration
	MySQL® (version 5.1.x and higher)
	Oracle DB (10 and higher)
	SQL Server® (2012, 2008)

	EnginFrame Service Configuration
	EnginFrame Start

	Chapter 5. Running NICE EnginFrame
	Start, Stop, and Check Status
	Accessing the Portal
	Demo Sites
	Administration Portal
	Monitor Services
	Develop Services
	Troubleshooting Services
	EnginFrame Statistics

	Applications Portal
	Admin's Portal
	User's Portal

	Views Portal
	Admin's Portal
	User's Portal

	Part II. Administration
	Chapter 6. Common Administration Tasks
	Main Configuration Files
	Deploying a New Plugin
	NICE's Official Plugins
	Custom Plugins

	Changing Java™ Version
	Changing Default Agent
	Managing Internet Media Types
	Customizing Error Page
	Limiting Service Output
	Configuring Agent Ports
	Customizing User Switching
	Customizing User Session Timeout
	Apache®-Tomcat® Connection
	Changing Charts Backend
	Interactive Administration
	Configuration Files
	interactive.efconf
	Default Parameters
	INTERACTIVE_DEFAULT_OS
	INTERACTIVE_DEFAULT_JOBMANAGER
	INTERACTIVE_DEFAULT_REMOTE
	INTERACTIVE_DEFAULT_VNC_QUEUE

	Limits
	INTERACTIVE_DEFAULT_MAX_SESSIONS

	interactive.<remote>.resolutions.conf
	authorization.xconf
	nat.conf
	proxy.conf
	url.mapping.conf
	xstartup files
	mime-types.xml

	Interactive Session Life-cycle Extension Points
	Interactive Session Dynamic Hooks
	Sample Starting and Closing Hooks to Configure an AWS™ ALB

	Session limits
	Number of sessions

	Log files
	Interactive Plugin Directory Structure

	Views Administration
	Configuration Files
	vdi.conf
	Users Access Parameters
	VDI_ALLOW_ALL_USERS

	service-manager.efconf
	General Parameters
	VDI_SERVICES_ROOT
	SM_TEMPLATES_ROOT

	Interactive Services Parameters
	SM_CATALOG_INTERACTIVE
	SM_PUBLISHED

	interactive.editor.efconf
	Interactive Editor Parameters
	VDI_EDITOR_OS
	VDI_EDITOR_CLUSTERS
	VDI_EDITOR_CLUSTERS_ARCH_clusterId
	VDI_EDITOR_REMOTES
	VDI_EDITOR_REMOTES_ARCH_remoteId
	VDI_EDITOR_DESKTOP_MANAGERS

	Log files
	VDI Plugin Directory Structure

	Applications Administration
	Configuration Files
	applications.conf
	Users Access Parameters
	APPLICATIONS_ALLOW_ALL_USERS

	service-manager.efconf
	General Parameters
	APPLICATIONS_SERVICES_ROOT
	SM_TEMPLATES_ROOT
	SM_PUBLISHED

	Batch Services Parameters
	SM_CATALOG_BATCH

	Interactive Services Parameters
	SM_CATALOG_INTERACTIVE

	interactive.editor.efconf

	Log files
	Applications Directory Structure

	Chapter 7. Managing Spoolers
	Spoolers Requirements
	Spooler Security Permissions

	Configuring EnginFrame Spoolers
	Configuring Spoolers Default Root Directory
	Download Files From Spoolers
	Configure Download URL on Agent
	Configure Streaming Download Timeout
	Configure Streaming Download Sleep Time

	Spooler Life Cycle
	Overview
	Change Repository Location
	Configure Reaper Sleep Time
	Spoolers Removal: Dead Spoolers

	Chapter 8. Managing Sessions Directory
	Sessions Requirements

	Chapter 9. Customizing Logging
	Tomcat® Logging
	EnginFrame Server and Agent Logging
	Configuration Files
	Change Log Files Location
	Change Log Files Size and Rotation Policy
	Change Log Level
	Fine Tune Logging
	Define New Categories and Targets
	Change Message Format

	EnginFrame Scriptlet Logging

	Chapter 10. EnginFrame Licenses
	License Files Management
	Configuring License Files Location

	License File Format
	License Checking
	License Token Count
	List of Licensed Hosts

	Monitoring License Usage
	Enable Debug Log Messages for Licenses

	Part III. Security
	Chapter 11. Authentication Framework
	Standard EnginFrame Authentication Authorities
	Default Authority
	User Mapping
	Configuring NICE EnginFrame Authorities
	PAM
	LDAP
	Active Directory
	HTTP
	Certificate

	Custom Authentication Authority
	The <authority>.login File
	The ef.auth File

	Chapter 12. Authorization System
	Configuring Authorization
	Defining Actors
	Defining Access Control Lists
	Condition Based ACL

	Chapter 13. Configuring HTTPS
	Change HTTPS certificates

	Index

